MAX/MAB相是一类非范德华三元层状材料, 具有丰富的元素组成和晶体结构, 兼具陶瓷和金属的物理性质, 在高温、强腐蚀、辐照等极端环境中极具应用潜力。近年来, 由MAX/MAB相衍生的二维(2D)材料(MXene和MBene)在材料物理与材料化学领域引起了广泛兴趣, 已经成为继石墨烯和过渡金属硫族化合物之后最受关注的二维范德华材料。MAX/MAB相材料结构调控不仅对这类非范德华层状材料本征性能产生重要影响, 而且对其衍生的二维范德华材料结构功能特性研究也具有重要价值。本文归纳和总结了MAX/MAB相层状材料在结构调控、理论计算和应用基础研究等方向的最新科研进展, 并展望了该类层状材料未来发展方向。
临床医学和生物材料的蓬勃发展, 促进了多种疾病的诊断成像、有效治疗和精准诊疗。材料与医学交叉学科(简称“材料医学”)的发展旨在克服传统临床医学面临的主要障碍和挑战, 如系统性毒性、生物利用度差、靶向部位特异性低、诊断/治疗效果不理想等。本文系统地阐述了近年来各种医学材料在疾病诊断、治疗和诊疗方面的应用进展, 特别是纳米医学材料的研究进展。首先, 重点讨论癌症治疗领域的生物医学成像(如光学成像、磁共振成像、超声成像、计算机断层成像等)和治疗策略(如光热治疗、动力学治疗、免疫治疗、协同治疗等)。此外, 我们还重点介绍了医学材料对骨组织工程、呼吸系统、中枢神经系统等疾病的诊断和治疗的最新进展, 并重点阐述了用于生物传感和抗微生物等其他代表性生物医学领域的医学材料。最后, 我们讨论了这些独特的医学材料在实际临床转化和应用中所面临的挑战和未来的机遇, 以促进其早日实现临床转化, 推动医学进步和造福患者。
采用常规热烧结实现陶瓷粉体的致密化, 烧结温度通常超过1000 ℃, 这不仅需要消耗大量能源, 还会使一些陶瓷材料在物相稳定性、晶界控制以及与金属电极共烧等方面面临挑战。近年来提出的冷烧结技术(Cold Sintering Process, CSP)可将烧结温度降低至400 ℃以下, 利用液相形式的瞬态溶剂和单轴压力, 通过陶瓷颗粒的溶解-沉淀过程实现陶瓷材料的快速致密化。冷烧结技术具有烧结温度低和时间短等特点, 自开发以来受到广泛关注, 目前已应用于近百种陶瓷及陶瓷基复合材料, 涉及电介质材料、半导体材料、压敏材料和固态电解质材料等。本文介绍了冷烧结技术的发展历程、工艺技术及其致密化机理, 对其在陶瓷材料及陶瓷-聚合物复合材料领域的研究现状进行了综述, 其中根据溶解性的差异主要介绍了Li2MoO4陶瓷、ZnO陶瓷和BaTiO3陶瓷的冷烧结现状。针对冷烧结技术工艺压力高的问题及可能的解决途径进行了探讨, 并对冷烧结技术未来的发展趋势进行了展望。
连续碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是发展先进航空发动机的关键材料, 航空发动机长时服役要求材料具有优异的高温蠕变性能。本工作研究了平纹编织Cansas-II碳化硅纤维增强碳化硅复合材料(2D-SiCf/SiC)在空气中的高温蠕变行为, 蠕变温度为1200~1400 ℃, 应力水平为80~140 MPa。利用扫描电子显微镜(SEM)观察了2D-SiCf/SiC复合材料的微观组织和断口形貌, 使用能谱分析仪(EDS)进行了成分分析。结果表明: 当蠕变应力低于比例极限应力(σPLS)时, 2D-SiCf/SiC的蠕变断裂时间超过500 h, 稳态蠕变速率为1×10-10~5×10-10 /s, 蠕变行为由基体和纤维共同控制。当蠕变应力高于σPLS时, 复合材料的基体、纤维和界面均发生氧化, 蠕变断裂时间显著降低, 稳态蠕变速率提高一个数量级, 蠕变行为主要由纤维控制。
二十一世纪以来, 以氮化镓(GaN)和氧化锌(ZnO)为代表的第三代宽禁带(Eg>2.3 eV)半导体材料正成为半导体产业发展的核心支撑材料。由于GaN与ZnO单晶生长难度较大, 成本较高, 常采用外延技术在衬底材料上生长薄膜, 因此寻找理想的衬底材料成为发展的关键。相比于传统的蓝宝石、6H-SiC、GaAs等衬底材料, 铝镁酸钪(ScAlMgO4)晶体作为一种新型自剥离衬底材料, 因其与GaN、ZnO具有较小的晶格失配(失配率分别为~1.4%和~0.09%)以及合适的热膨胀系数而备受关注。本文从ScAlMgO4晶体的结构出发, 详细介绍了其独特的三角双锥配位体结构与自然超晶格结构, 这是其热学性质与电学性质的结构基础。此外, ScAlMgO4晶体沿着c轴的层状结构使其具有自剥离特性, 大大降低了生产成本, 在制备自支撑GaN薄膜方面具有良好的市场应用前景。然而ScAlMgO4原料合成难度较大, 晶体生长方法单一, 主要为提拉法, 且与日本存在较大的差距, 亟需开发新的高质量、大尺寸ScAlMgO4晶体的生长方法来打破技术壁垒。
薄膜电容器是现代电力装置与电子设备的核心电子元件, 受限于薄膜介质材料的介电常数偏低, 当前薄膜电容器难以获得高储能密度(指有效储能密度, 即可释放电能密度), 从而导致薄膜电容器体积偏大, 应用成本过高。将具有高击穿场强的聚合物与高介电常数的纳米陶瓷颗粒复合, 制备聚合物/陶瓷复合电介质, 是实现薄膜电容器高储能密度的有效策略。对于单层结构的0-3型聚合物/陶瓷复合电介质, 其介电常数与击穿场强难以同时获得有效提升, 限制了储能密度的进一步提高。为了解决此矛盾, 研究者们叠加组合高介电常数的复合膜与高击穿场强的复合膜, 制备了2-2型多层复合电介质, 能够协同调控极化强度与击穿场强来获取高储能密度。研究表明, 调控多层复合电介质的介观结构与微观结构, 可以实现优化电场分布、协同调控介电常数与击穿场强等目标。本文综述了近年来包括陶瓷/聚合物和全有机聚合物在内的多层聚合物基复合电介质的研究进展,重点阐述了多层结构调控策略对储能性能的提升作用,总结了聚合物基多层复合电介质的储能性能增强机制, 并讨论了当前多层复合电介质面临的挑战和发展方向。
相比于第一代和第二代半导体材料, 第三代半导体材料具有更高的击穿场强、电子饱和速率、热导率以及更宽的带隙, 更适用于制备高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。氮化镓(GaN)作为第三代半导体材料的代表之一, 是制作蓝绿激光、射频微波器件和电力电子器件的理想衬底材料, 在激光显示、5G通信、相控阵雷达、航空航天等领域具有广阔的应用前景。氢化物气相外延(Hydride vapor phase epitaxy, HVPE)方法因生长设备简单、生长条件温和和生长速度快而成为制备GaN晶体的主流方法。由于普遍使用石英反应器, HVPE法生长获得的非故意掺杂GaN不可避免地存在施主型杂质Si和O, 使其表现出n型半导体特性, 但载流子浓度高和导电率低限制了其在高频大功率器件中的应用。掺杂是改善半导体材料电学性能最普遍的方法, 通过掺杂不同掺杂剂可以获得不同类型的GaN单晶衬底, 提高其电化学特性, 从而满足市场应用的不同需求。本文介绍了GaN半导体晶体材料的基本结构和性质, 综述了近年来采用HVPE法生长高质量GaN晶体的主要研究进展; 对GaN的掺杂特性、掺杂剂类型、生长工艺以及掺杂原子对电学性能的影响进行了详细介绍。最后简述了HVPE法生长掺杂GaN单晶面临的挑战和机遇, 并展望了GaN单晶的未来发展前景。
陶瓷材料因具有良好的机械性能、抗腐蚀性、耐高温性及抗氧化性等, 被广泛应用于航空航天、医疗、能源交通等领域, 陶瓷材料自身及其与金属材料的连接技术对于实际工程应用具有重要意义。由于部分陶瓷材料与电场的特殊作用机理, 将外加电场应用于陶瓷材料的连接技术中, 可以获得多种普通连接技术所不具备的优势, 如连接温度较低和连接时间较短等, 这就催生了新型陶瓷材料电场辅助连接技术。本文着重梳理了陶瓷及陶瓷基复合材料电场辅助连接技术的研究现状, 对近年来电场辅助连接技术的研究进展进行了综述, 重点介绍了电场辅助扩散连接(Electric field-assisted diffusion bonding, FDB) 技术、放电等离子体烧结 (Spark plasma sintering, SPS)连接技术以及新型低温快速闪连接(Flash joining, FJ) 技术的连接机理、典型界面微观结构、接头强度及影响因素等, 阐述了不同电场辅助连接技术的适用范围和局限性, 并对陶瓷材料电场辅助连接技术的发展进行了展望。
随着社会经济发展, 人们对疾病的预防、诊断、治疗和预后的要求日益提高。特别是, 新冠肺炎疫情爆发对人类生命健康造成了巨大威胁, 也给全球经济社会带来了明显冲击。生物材料(包括且不限于各种微纳米级生物材料和大量三维块体/植入体生物材料)领域的快速发展, 为解决医学健康问题提供了新的方向和可能性。但是, 生物材料的临床转化进展相对缓慢, 目前只有少量基于生物材料的产品获得了临床批准。
基于材料科学和临床医学的发展, 跨学科融合产生了一个新的学科——材料医学, 其从临床医学问题和挑战出发, 设计并制备满足直接应用目的/需求的生物材料/医用材料, 期望直接解决临床面临的关键问题。因此, 材料医学重点关注的是临床问题, 通过材料学的技术解决临床问题, 并进一步拓展至与临床医学直接相关的医用材料(医学材料), 包括医疗设备相关的材料体系等。一方面, 材料医学聚焦于解决传统医学面临的问题, 包括生物利用度低、治疗效果不理想、靶向特异性差和全身毒副作用等; 另一方面, 无机、有机和无机/有机杂化材料在微纳米尺度上具有独特的理化性质, 可被开发成多功能医用材料用于生物成像和疾病治疗。尤其是, 材料医学中的诊疗学将疾病诊断与治疗作为互补技术巧妙结合, 在影像引导下实现治疗和监控。其他基于材料医学发展的医学技术和医学材料, 例如组织工程材料、生物传感材料和抗微生物材料等, 也显现出巨大的潜力。尽管材料医学的各个分支都经历了爆炸式增长, 并为以更安全、更有效的方式进行疾病诊断和治疗提供了许多机会, 但其临床转化仍面临着一些关键挑战, 例如医学材料的可控制备、大规模生产和毒性评价, 体内生物屏障, 诊疗一体化和临床转化等。
近年来, 我国科研人员在医学材料的合理设计、制备、功能化修饰、理化机理探索以及生物医学应用等方面做出了许多代表性工作。为集中展示我国科学家在材料医学领域的最新研究成果, 激发社会各界对材料医学和医学材料的兴趣, 《无机材料学报》编辑部邀请上海大学陈雨教授担任特邀编辑, 以“医学材料”为主题出版专辑。本专辑收录了医学材料的最新综述文章和研究论文, 涉及压电半导体纳米材料、VA族单元素二维纳米材料、生物活性玻璃陶瓷、金属合金和氧化硅基杂化胶束等。希望本专辑能够抛砖引玉, 促进来自不同领域、不同学科背景的研究人员的合作, 共同推动材料医学这一新兴学科的发展, 以期改变和优化临床医学对各种疾病的诊断和治疗方式, 造福人类。
近年来, 拥有高发光量子效率的低维钙钛矿/类钙钛矿结构金属卤化物在辐射探测领域展现出潜在的应用前景。本工作利用反溶剂扩散法生长了高光学质量的厘米级尺寸零维结构Cs3Cu2I5单晶, 并系统研究了其光学吸收、透过、光致激发和发射、时间分辨光致发光、X射线辐照发光、余辉、热释光以及伽马射线探测性能。溶液法制备的Cs3Cu2I5晶体的光学带隙为3.68 eV。在X射线激发下, Cs3Cu2I5单晶的蓝光发射峰位于448 nm, 来源于自陷激子发光。闪烁衰减时间主分量为947 ns (96%)。Cs3Cu2I5单晶的余辉水平与商用BGO晶体相当。此外, 该晶体作为伽马射线闪烁体也表现出29000 photons/MeV的高光产额, 与熔体法制备的Cs3Cu2I5晶体闪烁性能相当。本研究证实了低成本制备高性能Cs3Cu2I5闪烁晶体的可行性。
氧化钛/氧化锆/碳三层结构钙钛矿太阳能电池(Perovskite solar cells, PSCs)具有原材料廉价、制备工艺易放大和稳定性好等优势, 受到了广泛关注。但三层结构PSCs的低温制备研究进展缓慢, 主要原因之一在于难以在低温条件下构建合适的氧化锆间隔层。本研究以尿素为孔隙率调节剂, 用简单的喷涂法制备多孔氧化锆间隔层用于三层结构PSCs。通过调节喷涂次数优化氧化锆层厚度为1100 nm时, 电池的性能最优, 单电池功率转换效率达到14.7%, 5块电池串联模块(5×0.9 cm×2.5 cm)达到10.8%。PSCs在恒温恒湿箱(25 ℃, 湿度40%)保存200 d, 功率转换效率保持稳定, 没有明显下降。柔性基底上的氧化锆层经50次弯曲测试后保持完整, 未见脱落。与传统的丝网印刷氧化锆间隔层制备方法相比, 本研究的喷涂方法具有方法简便、操作温度低、与柔性基底兼容性好的优点。
具有分级结构的BN纳米薄膜展现出优异的超疏水性, 但由于该薄膜的制备过程复杂、成本昂贵, 不适宜大规模的生产和应用。与之相比, 基于疏水BN粉体的超疏水涂层的应用会更为便捷。本研究采用镁热还原氮化燃烧合成法结合酸洗工艺制备了疏水的单相BN粉体, 水接触角为(144.6±2.4)°, 疏水性可以归因于BN粉体颗粒具有的微纳分级结构。在此基础上, 以这种燃烧合成的疏水BN粉体为填料制备的BN/氟硅树脂复合涂层进一步表现出超疏水性, 其中质量分数30% BN/FSi树脂涂层的水接触角为(151.2±0.7)°, 滚动角约为8°。该涂层与文献报道的通过CVD方法制备的BN纳米薄膜的性能相当, 但工艺更加简单。这是一种利用陶瓷粉体的疏水性来制备超疏水有机无机复合涂层的简便易行的新方法, 有望获得广泛的工程应用。
细菌和病毒一直对人类健康构成威胁。SARS-CoV-2已经在世界各地肆虐了近三年, 给人类健康带来了巨大危险。面对细菌的抗药性和抗生素治疗效果不佳等种种挑战, 人们迫切需要新的方法来对抗致病微生物。最近, 具有内在酶活性的纳米酶作为一种有前途的新型“抗生素”, 通过催化生成大量活性氧, 在生理条件下表现出卓越的抗菌和抗病毒活性。此外, 基于纳米酶的治疗中, 纳米材料在独特的物理化学特性(如光热和光动力效应)的帮助下可以增强治疗效果。本文综述了纳米酶在抗菌、抗病毒-方向的研究进展, 从机制角度系统总结分析了纳米酶消除细菌、病毒等微生物的原理, 对未来的新型纳米抗菌抗病毒材料的研发方向及其所面临的挑战进行了展望, 为开发下一代抗微生物感染纳米酶提供了思路。
电解质栅控晶体管(Electrolyte-gated transistors, EGTs)的沟道电导连续可调特性使其在构建神经形态计算系统中具有巨大应用潜力。本工作以非晶态Nb2O5作为沟道材料, LixSiO2作为栅电解质材料, 制备了一种具备低沟道电导(~120 nS)的EGT器件。该器件利用Li+嵌入/脱出Nb2O5晶格导致的沟道电导连续可逆变化, 模拟了神经突触的短程可塑性(Short-term plasticity, STP)、长程可塑性(Long-term plasticity, LTP)以及STP向LTP的转变等功能。基于这种EGT突触特性, 本工作设计了关联学习电路, 实现了突触权重的负反馈调节, 并模拟了“巴普洛夫的狗”经典条件反射行为。这些结果展现出EGT作为神经突触器件的巨大潜力, 为实现神经形态计算硬件提供了器件参考。
近年来, 受人脑独特工作模式的启发, 利用人工神经形态器件模拟突触和神经元的感知与计算功能吸引了广泛关注。到目前为止, 已经有很多关于神经形态晶体管的报道, 但绝大多数器件是在刚性衬底上加工的。柔性神经形态晶体管不仅可以同时实现信号传输和训练学习, 对多路信号进行非线性的时空整合与协同调控, 而且能密切贴合柔软的人体皮肤, 承受器官和组织的高生理应变。更重要的是, 柔性神经形态晶体管具有可设计的灵活性和优异的生物兼容性, 在检测生物环境中生理相关时间尺度的低幅信号方面具备独特的优势和应用潜力。柔性神经形态晶体管已经广泛应用于电子皮肤、人工视觉系统、智能可穿戴系统等领域。目前, 研制低功耗、高密度集成的柔性神经形态晶体管是研究的首要任务之一。本文综述了基于不同柔性衬底的神经形态晶体管的研究进展, 并展望了柔性神经形态晶体管的未来应用前景,这将为未来柔性神经晶体管的研制以及智能计算和感知应用提供比较详实的参考。
传统的人工视觉系统基于冯•诺依曼架构, 其视觉采集单元、处理单元和存储单元分离, 因而冗余数据在各个单元之间传递会造成高延迟和能耗。为了解决这一问题, 新一代神经形态视觉系统应用而生, 其具有感知、存储、计算一体化的架构, 既可以减少数据传递, 又可以提高数据处理效率。作为神经形态视觉系统的硬件实现基础, 光电人工突触器件近年来得到广泛研究。光电人工突触器件将光敏元件与突触器件的功能相结合, 为实现低延迟、高能效和高可靠性的神经形态视觉系统提供了新的可能。虽然光电人工突触材料千差万别, 但其工作机理主要包括氧空位的电离和解离、光生载流子的捕获和释放、光致相变以及光与铁电复杂相互作用等。本文从工作机理的角度, 介绍了光电人工突触器件的最新研究进展, 并分析了不同工作机理的优点及其面临的挑战。最后, 概述了未来光电人工突触的应用前景和发展方向。
大尺寸晶体材料是半导体、激光、通讯等领域的基础原料, 大尺寸、高品质晶体材料的制备已成为制约相关行业发展的瓶颈。我国面临的“卡脖子”技术中大多与关键基础材料相关。大尺寸晶体材料制备理论与技术是我国新材料产业高质量发展的一个重要方面, 也是提升相应高技术产业的基础, 突破大尺寸晶体材料的制备理论和技术是获得高品质大尺寸晶体材料的关键。探究并准确理解大尺寸晶体生长机理需要借助原位表征技术和多尺度计算模拟方法。单一的原位表征和模拟技术只能探究特定时间和空间范围内的结晶信息, 为了准确反映结晶过程需要综合应用多种方法。本文综述了最新的多尺度晶体生长研究的原位表征方法、多尺度计算模拟技术以及机器学习方法, 为发展结晶理论和控制晶体品质提供重要的实验和理论依据, 并将为提升大尺寸晶体生长工艺的开发而服务。
随着我国核辐射技术的进步, 辐射探测在近些年也得到了高速发展, 并被广泛应用于辐射安全监测、放射性医学诊疗、X射线安监系统、工业无损探伤以及微观粒子轨迹探测等诸多领域。辐射光致发光(Radio- photoluminescence, RPL)是一种在电离辐射作用下, 材料内部产生新的发光中心, 并被紫外光激发进而发光的现象, 可作为一种新型辐射探测手段。RPL材料通常具有存储辐射信息、信息几乎不衰减、剂量线性响应好、均匀稳定的高辐射灵敏度、能量依赖性小和可重复读数等特点, 弥补了光释光(Optically stimulated luminescence, OSL)和热释光(Thermally stimulated luminescence, TSL)材料在存储稳定性和重复使用性等方面的不足。自RPL现象被报道以来, RPL材料层出不穷, 如传统的Ag掺杂磷酸盐玻璃、Al2O3:C,Mg和LiF, 再到新型的Cu离子掺杂体系、Sm离子掺杂体系以及无掺杂体系材料等。同时, RPL应用也被不断发掘, 目前它已成为辐射探测领域不可或缺的材料之一。基于此, 本文概述了RPL材料的最新进展, 重点梳理了传统和新型RPL材料的发光原理、性能特点及其应用, 特别对比了不同RPL材料在辐射探测性能方面的差异。最后, 本文对RPL材料的优势及其不足之处进行了归纳分析, 并对其发展趋势进行了展望。
钇铁石榴石(Y3Fe5O12, YIG)晶体具有优异的磁学和磁光性质, 在微波和磁光器件中有着广泛的应用。目前商用的磁光材料是采用液相外延技术在Gd3Ga5O12(GGG)衬底上沉积的YIG单晶薄膜。本研究以无铅B2O3-BaF2为复合助熔剂, 采用顶部籽晶法技术(TSSG)生长YIG单晶材料, YIG晶体尺寸和重量分别可达43 mm×46 mm×11 mm和60 g。该晶体具有较窄的铁磁共振线宽(0.679 Oe)、高透明度(75%)和法拉第旋转角(200 (°)·cm-1@1310 nm, 160 (°)·cm-1@1550 nm)等优异的综合性能, 是微波和磁光器件的良好候选材料。更为重要的是, 这种生长技术非常适合大尺寸YIG单晶或稀土掺杂YIG单晶, 结合定向籽晶生长和提升工艺, 可以显著降低生产成本。
近年来, 增材制造技术作为一种新兴的制造技术受到了广泛关注。该技术在高性能陶瓷材料的成型制造领域具有巨大的发展潜力, 有望突破传统陶瓷加工和生产的技术瓶颈, 极大提升高性能陶瓷产品的设计和制备的自由度, 从而为高性能陶瓷材料制造技术的发展提供变革性的推动力。前驱体转化陶瓷通过化学方法制得聚合物,再经热处理转化为陶瓷材料。聚合物前驱体充分利用了自身良好的可加工性特点, 实现了目标结构的预成型, 并通过热处理工艺获得传统陶瓷工艺难以获得的先进陶瓷材料。而聚合物前驱体材料与增材制造技术的结合更受到了极大关注。本文在介绍聚合物前驱体增材制造技术特点的基础上, 系统阐述了聚合物前驱体增材制造技术的研究与应用前沿的现状与趋势, 并分析了聚合物前驱体增材制造技术面对的挑战以及未来发展方向。
放射性碘是典型的核裂变产物之一, 吸附-分离-固化放射性碘(129I、131I等)对于核电运营、乏燃料后处理具有重要意义。本研究采用静电纺丝技术和热还原方法, 以一种聚甲基倍半硅氧烷树脂(MK树脂)为原料, 成功制备出一种新型铋基复合纳米纤维膜(Bi@SiOCNF)。该材料以SiOC纤维为基体, 金属单质铋负载在SiOCNF表面与三维网络空间, 对气体碘表现出良好的捕获与固定能力。吸附实验结果表明, 该材料在2 h内可达到最大饱和吸附容量(515.2 mg/g)。XRD、XPS等测试结果表明, 铋基SiOCNF复合纳米纤维膜通过化学吸附与物理吸附机制共同吸附气态碘。热分析表明, Bi@SiOCNF具有良好的热稳定性。该材料在核电站、乏燃料后处理厂对放射性气态碘的捕获、固定和储存等方面具有潜在的应用前景。
以氮、磷污染物导致的水体富营养化问题在我国普遍存在。本研究将普鲁士蓝与改性生物炭相结合, 得到普鲁士蓝/生物炭复合材料。通过多种表征手段研究了复合材料的形貌及结构并通过模拟废水测试了其吸附性能。结果表明, 复合材料在pH 8时达到最佳吸附效果, 氨氮去除率在95%以上, 最大吸附量为24.4 mg/g, 比未改性生物碳提高101.3%。对复合材料吸附机理的研究表明, 复合材料通过普鲁士蓝对氨氮的配位作用对多组分污水中氨氮实现了选择性吸附。此外, 复合材料在外加H2O2溶液的条件下可形成芬顿氧化体系, 能实现同步催化降解有机污染物和促进氨氮的吸附, 因此有望在多组分富营养化污水治理中投入实际应用。
2022年是X射线衍射(XRD)发现的110周年。XRD Rietveld精修作为材料结构分析的重要手段, 在建立材料“构-效”关系方面发挥着重要的作用。正极材料是锂离子电池的重要组成部分, 深入理解其晶体结构及原子分布规律有助于推动锂离子电池正极材料的发展。本文简要介绍了XRD Rietveld结构精修及其在锂离子电池正极材料中的应用, 围绕几类典型正极材料, 重点讨论了Rietveld结构精修在正极材料的合成、退化衰减及结构改性中的应用和研究进展。XRD Rietveld精修可以得到物相比例、晶胞参数、关键原子占比、原子坐标等结构信息, 对开发高性能锂离子电池正极材料具有重要的指导意义。最后, 本文展望了X射线衍射技术在锂电正极材料结构研究中的机遇与挑战。
钙钛矿锰氧化物La1–xSrxMnO3 (LSMO)作为一种代表性庞磁阻材料, 在磁传感器等领域具有广阔的应用前景, 但在低磁场和室温下很难获得显著的庞磁阻效应。 为提高LSMO磁电阻效应和转变温度, 本研究采用传统固相反应法制备了La0.8Sr0.2Mn1–xAlxO3 (0≤x≤0.25)(LSMAO)多晶样品, 并系统分析了Al3+掺杂对LSMO电输运性质和磁电阻效应的影响。X射线衍射(XRD)图谱表明LSMAO样品具有单一的菱方结构, 属于$\text{R}\bar{3}\text{C}$空间群。电输运性质研究发现, 样品的电阻率随Al3+的掺杂呈指数型上升, 且外加磁场使金属-绝缘体转变温度有所提高。这可能是由于Al3+稀释了Mn3+/Mn4+离子网络, 在减少载流子数量的同时增加了磁无序。此外, LSMAO陶瓷的导电机理随Al3+的掺杂从小极化子模型(Small polaron hopping model, SPH)转变成变程跳跃模型(Variable range hopping model, VRH), 说明非磁性的Al3+抑制了铁磁团簇间的载流子交换, 使得小极化子热激活近邻跃迁过程被抑制。LSMAO的磁电阻效应从21.03% (x=0)增大到59.71% (x=0.25), 证明Al3+掺杂可有效增强LSMAO的磁电阻效应。
单晶金刚石是一种性能优异的晶体材料, 在先进科学领域具有重要的应用价值。在微波等离子体化学气相沉积(Microwave plasma chemical vapor deposition, MPCVD)单晶金刚石生长中, 如何提高晶体的生长速率一直是研究者们关注的重点问题之一, 而采用高能量密度的等离子体是提高单晶金刚石生长速率的有效手段。在本研究中, 首先通过磁流体动力学(Magnetohydrodynamic, MHD)模型仿真计算, 优化设计了特殊的等离子体聚集装置; 随后基于模拟结果进行生长实验, 采用光谱分析和等离子体成像对等离子体性状进行了研究, 制备了单晶金刚石生长样品; 并通过光学显微镜、拉曼光谱对生长样品进行测试。模拟结果显示, 聚集条件下的核心电场和电子密度是普通条件下的3倍; 生长实验结果显示, 在常规的微波功率(3500 W)、生长气压(18 kPa)下得到的高能量密度(793.7 W/cm3)的等离子体与模型计算结果吻合。高能量密度生长条件并不会对生长形貌产生较大影响, 但加入一定量氮气能够显著改变生长形貌, 并对晶体质量产生影响。采用这种方法, 成功制备了高速率(97.5 μm/h)单晶金刚石。不同于通过增大生长气压来获得高能量密度的途径, 本研究在常规的生长气压和微波功率下也可以生长高能量密度单晶金刚石。
过渡金属硒化物具有较高的理论比容量和良好的导电能力, 是钠离子电池潜在的负极材料, 但其在电化学过程中会发生较大体积变化, 循环寿命不佳, 发展受到了限制。为缓解上述问题, 本研究以金属有机框架材料ZIF-67为前驱体, 用单宁酸(Tannic acid, TA)将ZIF-67刻蚀为空心结构, 再通过碳化、硒化制备出以碳为骨架的纳米中空CoSe2材料(H-CoSe2/C), 相较于未经刻蚀处理的CoSe2材料(CoSe2/C), H-CoSe2/C表现出更好的储钠性能, 特别是循环稳定性得到显著提高。50 mA·g-1电流密度下, 经过350次循环, 可逆比容量保持在383.4 mAh·g-1, 容量保持率为83.6%; 在500 mA·g-1电流密度下, 经过350次循环后容量保持率仍能达到72.2%。本研究表明, 中空结构能够提供足够的空间以缓解材料在电化学过程中的体积变化, 进而提高电极材料的循环性能。
Bi12GeO20晶体是一种多功能光电材料, 在可见光范围内具有高速光折变响应, 以及良好的压电、声光、磁光, 旋光和电光等性能。目前, 提拉法生长Bi12GeO20晶体, 存在生长成本高、晶锭形状不规则、生长产率低、晶体光学质量差和有效晶体截面小等问题。本研究率先采用改进的坩埚下降法, 在铂金坩埚和空气气氛中生长大尺寸Bi12GeO20晶体。通过各种分析测试方法研究生长获得的Bi12GeO20晶体中宏观缺陷的形态、分布和成分构成, 探讨了晶体生长过程中主要宏观缺陷的形成过程和成因。坩埚下降法生长的Bi12GeO20晶体存在两种主要宏观缺陷:枝蔓状和管状包裹体。其中, 枝蔓状包裹体与铂金溶蚀后的析晶相关, 而管状包裹体与铂金析出、接种界面不稳定性和温度波动有关。本研究提出了消除坩埚下降法生长晶体中宏观缺陷的技术途径, 通过降低生长控制温度、缩短高温熔体保持时间和优选籽晶等措施, 可重复地生长光学质量良好、55 mm× 55 mm× 80 mm的大尺寸Bi12GeO20晶体, 显著提升晶体的光学透过性能。
随着CeF3晶体在激光和磁光领域应用的持续发展, 大尺寸、高光学质量的CeF3单晶的需求日益急迫, 而CeF3熔体的高黏度和低热导率的特性给晶体生长工艺带来了较大挑战。为研究CeF3熔体低导热性引发的生长问题, 探究其生长过程中炉体结构和工艺参数对温度分布和结晶界面的影响机制, 本工作对热交换坩埚下降法(Heat Exchanger-Bridgman method, HEB)生长大尺寸(ϕ80 mm)CeF3晶体中炉体结构与晶体/熔体温度分布关系、不同生长阶段界面的变化规律以及热场结构对生长界面的作用机制开展了数值模拟研究。研究结果表明:当发热体长度与坩埚长度相适应时,更有利于构建合理的温度梯度场, 而放肩和等径生长阶段的凹界面问题则可以通过改变隔板形状和加反射屏调节坩埚壁温度分布得到有效解决。本研究成果不仅可以加深对CeF3晶体结晶习性的理解, 炉体结构和生长界面的优化思路对坩埚下降法制备其他晶体同样有实际指导意义。
碳化硅陶瓷基复合材料以其高比强度、高比模量、高导热、良好的耐烧蚀性能、高温抗氧化性、抗热震性能等特性, 广泛应用于航空航天、摩擦制动、核聚变等领域, 成为先进的高温结构及功能材料。本文综述了高导热碳化硅陶瓷基复合材料制备及性能等方面的最新研究进展。引入高导热相, 如金刚石粉、中间相沥青基碳纤维等用以增强热输运能力; 优化热解炭炭与碳化硅基体界面用以降低界面热阻; 热处理用以获得结晶度更高、导热性能更好的碳化硅基体; 设计预制体结构用以建立连续导热通路等方法, 提高碳化硅陶瓷基复合材料的热导率。此外, 本文展望了高导热碳化硅陶瓷基复合材料后续研究方向, 即综合考虑影响碳化硅陶瓷基复合材料性能要素, 优化探索高效、低成本的制备工艺; 深入分析高导热碳化硅陶瓷基复合材料导热机理, 灵活运用复合材料结构与性能的构效关系, 以期制备尺寸稳定、具有优异热物理性能的各向同性高导热碳化硅陶瓷基复合材料。
Zintl相Mg3X2(X= Sb, Bi)基热电材料以其无毒性、价格低及性能高等优点而备受关注。与多晶相比, Mg3X2晶体在揭示材料本征热电性能、各向异性性质及电声输运调控策略等方面极具研究价值。本文系统归纳与总结近年Mg3X2基晶体的生长及热电性能发展现状。针对Mg3X2晶体生长过程中Mg元素易挥发和活泼金属性的难点, 多种技术如合适的温度冷却法、定向凝固法、助熔剂法、助熔剂坩埚下降法等被开发运用于生长Mg3X2晶体, 其中助熔剂坩埚下降法在获得大尺寸块状晶体方面更有竞争力。n型和p型Mg3Sb2晶体都呈现出各向异性的热电性能。调控晶体生长速度、Mg元素自补偿含量、杂质元素掺杂与固溶含量等手段, 都会影响Mg3X2晶体的电学性能和热学性能。目前p型和n型Mg3Sb2基晶体的最高ZT值可分别达到0.68和0.82。本文综述了Zintl相Mg3X2基晶体生长与热电性能的研究进展, 发现助熔剂坩埚下降法是制备大尺寸Mg3X2基晶体的关键, 通过元素掺杂及固溶方法调控载流子浓度和能带结构可以进一步提高Mg3X2基晶体性能。该生长方法和研究思路对将来Mg3X2基晶体制备与热电性能深入研究具有重要指导意义。
可穿戴设备是能穿在身上, 实时获取人体或环境信息并进行传递和处理的功能设备, 在医疗健康、人工智能、运动娱乐等领域具有广阔的应用前景。随着可穿戴设备的发展, 各类柔性传感器应运而生。基于压电效应的柔性力学传感器因具有感应频率宽、响应快、线性好、自供电等优势而备受关注。然而传统的压电材料多为脆性陶瓷和晶体材料, 限制了其在柔性方面的应用。随着研究的深入, 越来越多的柔性压电材料和压电复合材料不断涌现, 给柔性可穿戴力学器件注入了新的发展活力。本文主要概括了柔性可穿戴压电器件的前沿进展, 包括压电原理、柔性压电材料的制备与性能提升方法。此外, 还详细总结了柔性可穿戴压电设备的主要应用方向, 包括医疗健康和人机交互, 以及遇到的挑战与机遇。
在陶瓷表面引入含压应力的涂层是一种有效的增强技术。本研究将氧化铝和石英粉混合浆料涂覆在预烧后的氧化铝坯体上, 无压共烧原位合成了热膨胀系数较低的莫来石-氧化铝涂层。利用降温过程中涂层内形成的残余压应力实现了氧化铝陶瓷的预应力强化。结果表明:随着涂层中石英掺量增加, 预应力氧化铝的强度出现先增大后减小的趋势; 当涂层中掺入石英的质量分数为15%时, 预应力增强效果最好, 涂层与基体界面结合紧密, 预应力氧化铝陶瓷的弯曲强度达到(549.44±27.2) MPa, 比普通氧化铝的强度提高了37.19%; 当涂层中掺入石英的质量分数增大到15%以上, 由于烧结收缩不匹配反而引起强度下降; 这种预应力增强效果会随着温度升高逐渐减弱, 当测试温度达到并超过1000 ℃时, 预应力氧化铝和普通氧化铝会具有大致相等的抗弯强度。由于表层压应力的存在, 预应力氧化铝还展现出更好的抗热震性能和损伤耐受性。
MgAgSb是一种具有潜力且元素储量相对丰富的室温热电材料, 有望用于构建高性能可穿戴温差电池。本研究尝试在聚酰亚胺(PI)基底上磁控溅射制备MgAgSb薄膜, 并系统研究退火条件对其热电性能的影响。结果表明样品未形成纯相的MgAgSb柔性热电薄膜, 而是形成了由Ag3Sb、MgO及Sb2O4多相组成的柔性薄膜, 其中Ag3Sb起主要热电功能。不同气氛退火可以显著提升MgO-Ag3Sb-Sb2O4 (Mg-Ag-Sb)柔性薄膜的热电性能, 其中真空处理性能最佳。在真空条件下, 随着退火温度升高, 柔性薄膜的热电性能呈现先增加后减少的趋势, 当退火温度为573 K时热电性能最佳, 室温附近功率因子达到74.16 μW∙m-1∙K-2。并且, 薄膜表现出较好的柔性, 弯曲900次后, 电导率仅变化了14%。本研究为MgAgSb柔性热电薄膜的制备及可穿戴应用提供了参考。
碳材料以其低成本、良好的化学稳定性和热稳定性等优异特性被广泛应用于各种催化反应中。本研究利用来源广泛的天然脱脂棉为原材料, 通过原位气相掺杂的方法制备了N掺杂、B掺杂、BN共掺杂的生物质碳材料, 并将其应用在丙烷直接脱氢制丙烯反应中。研究发现, 与未掺杂的生物质碳相比, 杂原子掺杂的生物质碳均表现出更高的丙烷转化率和丙烯选择性, 而且N、B单独掺杂的生物质碳材料催化性能优于BN共掺杂的生物质碳材料, 其中N掺杂的生物质碳具有最优催化性能: 在600 ℃反应温度下, 丙烷转化率达到17.6%, 总烯烃收率达14.8%, 且经过12 h的脱氢反应后, 催化剂性能无明显的衰减。通过对这些碳材料的化学结构和催化性能的对比分析, 发现N掺杂和B掺杂使得碳材料表面的大量C-O基团转变为具有丙烷脱氢活性的C=O基团, 抑制反应过程中的C-C键断裂, 从而提高目标产物丙烯的选择性。生物质碳材料成本低廉且来源广泛, 以其作为催化剂可以极大地推动丙烷脱氢工业的发展。
结合蓝色激光二极管和黄色荧光转换器制备的固态激光照明引起了人们极大的关注, 但荧光转换材料的热猝灭效应显著影响了高功率激光照明的实现。通过组分设计和性能优化可以提高荧光转换器的热导率和发光均匀性。本工作采用固相反应烧结技术制备了一系列不同Al2O3含量的Al2O3-YAG:Ce复相陶瓷荧光体, 研究了Al2O3含量对Al2O3-YAG:Ce陶瓷荧光体微观结构、相组成、光学性能和热学性能的影响。Al2O3-YAG:Ce陶瓷荧光体在800 nm处的总透过率随着Al2O3含量的增加(0→90%)而下降(82.6%→23.6%)。Al2O3-YAG:Ce陶瓷荧光体的激发和发射强度随Al2O3含量的增加先增大后减小。当Al2O3/Al2O3-YAG:Ce的质量比为70%时, 陶瓷荧光体在室温下的热导率高达25.7 W·m-1·K-1, 且表现出最高的发射强度。当采用功率密度为20 W·mm-2的蓝光二极管泵浦 70% Al2O3-YAG:Ce复相陶瓷荧光体时, 可获得3724 lm的高光通量和239.4 lm·W-1的高流明效率。此外, 当功率密度从1 W·mm-2增大到20 W·mm-2时, 流明效率仅下降10.5%, 光通量持续增加且未出现发光饱和。上述结果显示, Al2O3-YAG:Ce复相陶瓷荧光体具有良好的发光效率和热稳定性, 将在高功率激光照明中具有广阔的应用前景。
二氧化硅气凝胶以其低密度、高孔隙率等特性在高温隔热领域显示出广阔的应用前景, 但其脆性和高成本的超临界干燥方式限制了其应用。本研究以乙烯基三甲氧基硅烷(VTMS)和乙烯基甲基二甲氧基硅烷(VMDMS)为前驱体, 通过溶胶凝胶、常压干燥制备了具有高柔性的海绵状有机硅气凝胶, 并研究了前驱体摩尔比对气凝胶微观结构和压缩回弹性能的影响, 以及气凝胶分别在高温有氧和无氧环境中的无机化转变过程。结果表明, 随着前驱体中VTMS/VMDMS比例增加, 气凝胶颗粒变小且堆积更紧密, 其压缩回弹性能也随之降低; 在800 ℃空气氛围中, 气凝胶通过侧基的氧化和主链Si-O-Si的断裂、重排转化为无机SiO2; 在800 ℃ N2氛围中, 气凝胶通过裂解反应转化为无机SiO2和游离碳的混合体, 1000~1400 ℃进一步处理后SiO2和游离碳经碳热还原反应生成SiO4、SiCO3、SiC2O2和SiC3O等无定形的Si-O-C结构和少量β-SiC纳米线; 经1200 ℃碳热还原反应生成的Si-O-C结构具有最优的耐高温氧化性能, 可为制备耐高温氧化Si-O-C气凝胶提供参考。
温室气体的过量排放对全球气候产生严重不良影响, 如何减少碳排放已成为全球性议题。超级电容器具有使用寿命长、功率密度高、碳排放量相对较低的优点。大力发展超级电容器储能是建立未来能源系统的可靠和有效措施。MXene材料具有优良的亲水性、电导率、高电化学稳定性和表面化学可调性, 近年来在超级电容器储能应用研究领域广受关注, 但MXene严重的自堆叠问题限制了其储能性能充分发挥, 开发更先进的MXene材料对于下一代高性能电化学储能设备至关重要。基于此, 本文综述了MXene材料在超级电容器储能应用领域的研究进展, 介绍了MXene的结构和储能特性, 探讨了MXene的储能机理, 重点剖析了纳米工程改进MXene电极性能的结构设计, 详细总结了MXene复合材料构效关系和在超级电容器应用方面的最新研究进展, 最后提出了MXene材料用作超级电容器电极的研究方向和发展趋势。
与其它储能设备相比, 由介电复合材料制得的介质电容器在快速充放电能力与高功率密度方面极具优势, 如何提高介电复合材料能量密度与优化其击穿性能已成为当前研究热点之一。为进一步调控并兼顾介电常数与击穿性能, 本工作基于DBM(Dielectric Breakdown Model, 介电击穿模型), 采用有限元数值模拟, 研究了无机填料的分布对柔性聚二甲硅氧烷(PDMS)基介电复合材料体系的电场与发生介电击穿时击穿损伤形貌演变的具体影响。研究结果表明: 填料与基体边界处存在较大的介电差异, 可以使用较大介电常数的聚合物基体或较小介电常数的无机填料来减小其界面处的高电场区域, 继而提高复合材料的耐击穿能力;同时发现当无机填料分散更均匀时, 其树状损伤通道更容易产生分支, 此种情况将使介电击穿的树状损伤通道的损伤位点增多, 延缓其损伤速度, 继而提高复合材料的耐击穿性能。该研究结果将为开发高储能密度且具有优异击穿性能的有机-无机复合电介质材料提供坚实的理论依据。