随着高速飞行器朝着更宽空域、更长时间和更高速度的方向发展, 对飞行器的鼻锥、前缘和发动机燃烧室等关键结构的热防护性能提出了更加严苛的要求, 发展在极端环境下使用的高性能热防护材料是当前的研究重点。超高温陶瓷复合材料具有优异的抗氧化烧蚀性能, 是一类极具应用潜力的非烧蚀型热防护材料。然而, 本征脆性问题限制了超高温陶瓷复合材料的工程化应用, 需通过组分结构调控对其进行强韧化。同时, 飞行器有效载荷提升也对超高温陶瓷复合材料提出了轻量化的要求。本文系统概述了超高温陶瓷复合材料近年来取得的主要研究进展, 包括压力烧结、泥浆浸渍、前驱体浸渍裂解、反应熔渗、化学气相渗透/沉积与“固-液”组合工艺等制备方法, 颗粒、晶须、软相物质、短切纤维和连续纤维等强韧化方法及其机制, 抗氧化烧蚀性能与机理, 以及轻量化设计等。讨论了超高温陶瓷复合材料组分、微结构和性能之间的关系, 并指出了超高温陶瓷复合材料目前存在的挑战以及未来的发展趋势。
高速飞行技术的发展对高性能热结构材料提出了迫切需求。高熵碳化物(HECs)陶瓷作为近年来发展迅速的一类新型材料, 兼具高熵陶瓷与超高温陶瓷的优良特性, 在极端服役环境中具有广阔的应用前景, 因此得到国内外学者的广泛关注。相比仅含有一种或两种过渡金属元素的传统超高温碳化物陶瓷, HECs综合性能有所提升, 且具有更强的组成和性能可设计性, 因此具备较大的发展潜力。经过对HECs的不断探索, 研究人员获得了许多有趣的结果, 开发了多种HECs的制备方法, 对HECs的显微结构和性能的认识也更加深入。本文综述了HECs的基本理论以及从实验过程中获得的规律; 对HECs粉体、HECs块体、HECs涂层及薄膜, 以及纤维增强HECs基复合材料的制备方法进行了梳理和归纳; 并对HECs的力学、热学等性能, 尤其是与高温应用相关的抗氧化、抗烧蚀性能的研究进展进行了综述和讨论。最后, 针对HECs研究中有待进一步完善的科学问题, 对HECs的未来发展提出了展望。
柔性压电材料作为一类重要的功能材料, 具有韧性好、可塑性强、轻量化等优点, 可以实现机械能和电能的相互转换, 并贴附在人体上实时获取人体或环境信息, 在运动检测、健康监测、人机交互等领域具有广阔的应用前景。为满足人们对柔性压电材料结构不断提高的要求, 增材制造技术被广泛用于制造压电材料。该技术有望突破传统压电材料加工和生产的技术瓶颈, 极大提升柔性压电产品的结构自由度和性能, 从而推动柔性压电材料应用的变革。本文在介绍压电材料分类和性能的基础上, 系统阐述了增材制造柔性压电材料的主要工艺种类, 包括熔融沉积、墨水直写、选择性激光烧结、电辅助直写、光固化和墨水喷射等; 总结了增材制造柔性压电材料的结构, 主要有多层结构、多孔结构和叉指结构; 介绍了增材制造柔性压电材料在能量收集、压电传感器、人机交互和生物工程中的应用进展; 最后总结和展望了增材制造柔性压电材料面临的挑战以及未来发展趋势。
膨润土是一种储量丰富、廉价易得的天然黏土矿物, 其主要矿物成分为蒙脱石(MMT)。MMT因独特的二维层状纳米结构、丰富的孔隙结构和高比表面积而具有良好的离子交换性能、吸附性能和离子传输性能, 而且热稳定性、化学稳定性和机械稳定性优异。近年来, MMT因上述特性, 特别是其固有的金属离子(Li+、Na+、Zn2+等)传输特性, 引起了电化学储能领域研究人员的关注并被广泛用于电化学储能装置的关键部件(电极、聚合物电解质和隔膜), 展现出了良好的应用前景。本文首先概述了膨润土的结构及理化特性, 然后详细综述了膨润土基功能材料在电化学储能装置(主要包括金属负极、锂硫电池正极、固态/凝胶聚合物电解质、聚合物隔膜)中的应用研究进展, 在此基础上重点阐述了膨润土基功能材料在电化学储能过程中促进离子传输的作用机理。最后总结了当前膨润土基功能材料在电化学储能装置领域所面临的问题和挑战, 并对未来的研究方向进行了展望, 以期为今后设计开发膨润土基电化学储能功能材料提供有益指导。
氨不仅是合成化肥的主要原料之一, 而且是一种高能量密度的新型燃料。近年来, 电催化硝酸盐还原合成氨作为一种绿色可持续的合成途径, 具有能源利用率高、碳排放量低等特点, 因此受到了广泛关注, 有望替代高能耗和高碳排放的Haber-Bosch法来高效合成氨。然而, 目前该技术的反应效率、产物选择性以及催化材料稳定性都难以满足应用需求, 迫切需要寻找高效的催化材料, 从而促进电催化硝酸盐还原合成氨技术的进一步发展。近年来, 金属氧化物催化材料在电催化硝酸盐还原合成氨领域展现出良好的催化性能。基于此, 本文综述了金属氧化物电催化硝酸盐还原合成氨的研究进展, 重点概述了电催化硝酸盐还原合成氨的反应机理, 系统介绍了用于电催化硝酸盐还原合成氨的Cu基、Fe基和Ti基等典型催化材料, 以及通过形貌调控、表面重构、氧空位构造、元素掺杂和金属助催化材料负载等策略提高催化反应效率、产物选择性及催化材料稳定性的最新研究进展。最后, 展望了电催化硝酸盐还原合成氨领域面临的挑战及未来的研究方向。
目前, 人工智能在人类社会发挥着越来越重要的作用, 以深度学习为代表的人工智能算法对硬件算力的要求也越来越高。然而随着摩尔定律逼近极限, 传统冯·诺依曼计算架构越来越难以满足硬件算力提升的迫切需求。受人脑启发的新型神经形态计算采用数据处理与存储一体架构, 有望为开发低能耗、高算力的新型人工智能技术提供重要的硬件基础。人工神经元和人工突触作为神经形态计算系统的核心组成部分, 是当前研究的前沿和热点。本文聚焦氧化物人工神经元, 从神经元数学模型出发, 重点介绍了基于氧化物电子器件的霍奇金-赫胥黎神经元、泄漏-累积-发射神经元和振荡神经元的最新研究进展, 系统分析了器件结构、工作机制对神经元功能模拟的影响规律。进一步, 根据不同尖峰发射动态行为, 阐述了基于氧化物神经元硬件的脉冲神经网络和振荡神经网络的研究进展。最后, 讨论了氧化物神经元在器件、阵列、神经网络等层面面临的挑战, 并展望了其在神经形态计算等领域的发展前景。
氧化物陶瓷具有高硬度、高强度以及优异的抗氧化和抗腐蚀性能, 是高性能发动机极端高温、燃气腐蚀、氧化服役环境用重要的候选高温结构材料, 在航空航天用高端装备领域具有广阔的应用前景。与传统陶瓷制备技术相比, 激光增材制造技术能够一步实现从原材料粉末到高性能结构件的一体化高致密成型, 具有柔性度好、成型效率高的特点, 可以快速制备高性能、高精度、大尺寸复杂结构部件。近年来, 基于液固相变发展的熔体生长氧化物陶瓷激光增材制造技术已成为高温结构材料制备技术领域的前沿研究热点之一。本文首先概述了激光增材制造技术的基本原理, 着重介绍了选区激光熔化与激光定向能量沉积两种典型激光增材制造技术的工艺特点。在此基础上, 重点阐述了利用激光增材制造技术制备不同氧化物陶瓷的组织特征及工艺参数对微观组织的影响规律, 并总结比较了不同体系氧化物陶瓷力学性能的差异。最后, 对该领域存在的问题进行了梳理和分析, 并对未来的发展趋势进行了展望。
连续SiC纤维增强SiC(SiCf/SiC)复合材料具有高比强度、高比模量、耐高温、耐辐照等优点, 在先进航空发动机热端部件和核反应堆包壳等领域具有广阔的应用前景。SiCf/SiC复合材料具有纤维、界面、基体等复杂的多尺度结构, 其服役环境苛刻、损伤失效过程复杂, 深刻理解与准确分析其在近服役环境下损伤失效模式对于材料和构件的可靠服役具有重要意义。传统的“事后分析”方法无法获取材料在复杂服役环境下的损伤失效过程数据, 因此迫切需要发展面向高温服役环境的复合材料原位表征测试技术。本文介绍了基于扫描电子显微镜、数字图像相关、显微计算机断层扫描、声发射、电阻等原位监测方法的基本原理、优势与局限性, 重点讨论了以上各种原位监测方法及多种原位监测方法联用在SiCf/SiC复合材料高温环境力学表征中的最新研究进展。最后, 总结了SiCf/SiC复合材料高温环境原位监测技术存在的挑战, 并对多种原位技术联用、太赫兹辐射等新型检测技术、复杂构件的损伤原位监测方法等未来发展方向进行了初步展望。
与锂离子电池相比, 钠离子电池具有成本低、低温性能与安全性更佳等优势, 在成本与可靠性敏感的应用领域备受瞩目。高容量、低成本的普鲁士蓝类材料(PBAs)是极具前景的钠离子电池正极材料, 但结构中存在的结晶水导致电池性能快速衰减, 是限制其应用的瓶颈。本研究提出了一种简便易行的热处理策略, 以高效脱除PBAs正极材料中的结晶水, 340次循环后的容量保持率由73%提升到88%。利用原位技术揭示了PBAs正极在充放电过程中, 其晶体结构由三方向立方发生不可逆转变是造成首次库仑效率损失的机制, 并针对性地提出在正极中添加Na2C2O4钠补偿剂可以解决这一问题。在此基础上, 采用高离子电导率、高电化学稳定性的聚乙二醇二丙烯酸酯(PEGDA)准固态电解质, 匹配添加Na2C2O4钠补偿剂的低含水量PBAs正极与硬碳(HC)负极, 构建了高性能准固态钠离子电池。此类电池在20~500 mA·g-1电流密度下的比容量为58~105 mAh·g-1, 并可稳定循环超过200次。研究表明高效脱除结晶水, 可以显著提高PBAs正极的稳定性与比容量。
有机-无机杂化钙钛矿太阳能电池具有制备成本低、光电转换效率(Photoelectric Conversion Efficiency, PCE)高的巨大优势, 显示出广阔的商业化前景。经过十几年的深入研究, 钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的实验室器件(<1 cm2)、大面积器件(1~10 cm2)、迷你模组级器件(10~800 cm2)和模组级器件(>800 cm2)的最高认证PCE已分别提升至26.10%、24.35%、22.40%和18.60%。随着PSCs面积扩大, PCE急剧下降, 这主要是因为制备方法的局限性,难以获得高质量的大面积钙钛矿薄膜。实验室器件常采用的旋涂法难以应用到实际生产中, 目前大面积钙钛矿薄膜的制备方法主要有刮涂法和狭缝涂布法, 但其存在薄膜成核结晶过程难以精确控制等问题。本文从大面积有机-无机杂化钙钛矿薄膜的制备方法入手, 介绍了大面积钙钛矿层成膜机制及薄膜质量提升策略。最后, 对未来高PCE、高稳定性的大面积PSCs的制备技术和应用进行了展望, 旨在对高性能的大面积PSCs研究提供有益参考。
吸波材料通过吸收电磁波能量, 减少或消除电磁波的反射, 从而有效降低电磁波的干扰。材料的电磁参数决定其电磁波吸收性能, 调整填充比例、改变宏观形态以及复合方式等传统的调控策略存在一定局限性, 无法根本改变电磁参数, 阻碍了吸波材料的进一步发展。微纳结构设计策略可以改变材料的电导率、电荷密度以及磁性等理化性质, 进而根本性改变材料的电磁参数, 在调控电磁波吸收能力上展现出巨大优势。由于精确设计微纳结构材料难度较大且批量生产较为困难, 其发展受到限制。此外, 确定微纳结构与电磁波响应和损失机制之间的结构-性质理论关系仍然是一个重大的挑战。基于此, 本文分析了微纳结构与电磁性能的构效关系, 阐明了微纳结构设计策略在调控电磁波吸收能力方面的绝对优势, 并且梳理了元素掺杂设计、表面效应调控以及成核生长控制等微纳结构改变对电磁响应机制和损耗机制的影响, 为研究者们提供了基于微纳结构调控电磁性能的策略和理论指导。最后, 以量子点、纳米晶以及纳米线等典型微纳米材料作为范例, 综述了其调控电磁参数的策略、优势以及在电磁波吸波领域的研究现状与应用前景, 为微纳米材料在电磁波吸波领域的发展提供了理论基础和策略支撑。
与锂离子电池相比, 钠离子电池由于使用价格低廉且钠资源储量丰富, 在实现低成本、规模化储能方面极具优势与市场竞争力。但高度易燃、易泄漏的液态电解液使常规钠离子电池在破损、短路、热失控等情况下存在安全隐患, 并且液态电解液较低的电化学稳定性也制约了钠离子电池应用性能的进一步提升。本研究提出了一种简便易行的原位热聚合方法, 基于二季戊四醇戊-/己-丙烯酸(DPEPA)的自由基聚合反应制备了离子电导率为1.97 mS·cm-1, 钠离子迁移数为0.66, 且具有宽电化学稳定窗口的高性能聚合物凝胶电解质。研究发现DPEPA的最低未占据分子轨道(LUMO)能级低于碳酸乙烯酯(EC)与碳酸二乙酯(DEC)溶剂, 可与NaPF6在负极表面共同优先分解形成稳定的有机-无机复合固体电解质界面膜, 抑制电解液溶剂分解。在此电解质中匹配Na(Ni1/3Fe1/3Mn1/3)O2 (NFM)正极与硬碳(HC)负极, 构建的准固态钠离子全电池在120 mA·g-1电流密度下稳定循环300次后, 容量保持率达92%, 并在20~80 ℃温度区间具有99~120 mAh·g-1的比容量。利用原位X射线衍射仪揭示了NFM正极的高度结构可逆储钠机制与Na+在HC负极中的“吸附-填孔”存储机制。研究表明引入含有低LUMO能级聚合物的凝胶电解质是在增强电池安全性的同时, 提升固态钠离子电池电化学稳定性的有效手段。
连续纤维增强陶瓷基复合材料具有高强韧、耐氧化的特性, 现已成为航空航天领域重要的高温结构候选材料。反应熔渗法可实现陶瓷基复合材料的大规模、短周期和低成本制备, 是目前最具有商业化前景的技术之一。然而, 传统反应熔渗法制得陶瓷基复合材料存在着基体碳残留、纤维刻蚀等问题, 导致材料力学与氧化-烧蚀性能不佳。为突破传统碳基体陶瓷化程度低的局限性, 相关研究人员采用碳基体孔结构构筑方法, 通过多孔碳基体取代传统熔渗预制体中致密碳基体, 以促进碳基体的陶瓷化转变及反应熔体的消耗, 进而实现陶瓷基复合材料的性能优化。本综述介绍了采用多孔碳陶瓷化策略制备SiC陶瓷、SiC/SiC复合材料、C/SiC复合材料及超高温陶瓷基复合材料的相关研究进展, 并且通过与传统反应熔渗法对比, 验证了多孔碳陶瓷化策略的优势, 同时总结了相关多孔碳基体制备方法的发展演变过程, 最后针对先进陶瓷基复合材料的基础理论与工艺技术需求, 对多孔碳陶瓷化改进反应熔渗法的未来发展方向进行了展望。
为了应对能源供应紧张和环境保护的挑战, 探索和开发高效催化剂成为解决能源和环境问题的关键策略。单原子催化剂(Single-atom catalysts, SACs)作为近年来新兴的催化剂类型, 其独特的性质吸引了科研界的广泛关注。金属以单原子的形式负载在载体表面, 实现了电子、几何结构的特殊性以及原子利用率的最大化。在能源催化、环境催化、有机催化等多个领域, SACs都表现出优异的活性、选择性和稳定性, 为相关催化反应提供了强有力的支撑。更重要的是, SACs在贵金属利用方面展现出巨大的潜力。通过精确调控可以最大限度地提高贵金属的催化效率, 进而降低催化剂制造成本。因此, SACs的制备方法和作用机理成为国际催化领域的研究热点。本文综述了SACs的合成策略, 包括自下而上、自上而下和量子点交联/自组装, 具体介绍了共沉淀法、浸渍法、原子层沉积(Atomic layer deposition, ALD)法、高温原子热迁移法和高温热解法等制备SACs的研究进展, 并对SACs制备面临的挑战和未来前景进行了总结和展望。
本研究采用水热-磷化-电化学沉积法在磷化钴表面构筑了金属氢氧化物层, 制备了NiFeOH/CoP/NF复合电极, 考察了复合电极电解水制氢的性能。在1.0 molּ/L的KOH介质中, NiFeOH/CoP/NF复合电极表现出良好的催化电解水性能。在电流密度为100 mA/cm2时, NiFeOH/CoP/NF复合电极电催化析氢(HER)和析氧反应(OER)所需的过电势分别为141和372 mV。在电流密度为10 mA/cm2时, NiFeOH/CoP/NF同时用作阴极和阳极电解水所需电压仅为1.61 V。NiFeOH保护层增强了CoP在电解水反应中的活性和稳定性, NiFeOH/CoP/NF复合电极在恒电流电解中表现出高的HER和OER稳定性, 活性可维持60000 s, 性能未见明显衰减。将NiFeOH/CoP/NF两电极电解池与GaAs太阳能电池组成光伏-电解水系统, 该系统在100 mW/cm2模拟光照条件下, 太阳能至氢能转化效率达到18.0%, 并可稳定运行200 h。
功率半导体器件高电压、大电流、高功率密度的发展趋势, 对器件中陶瓷基板的散热能力和可靠性提出了更高的要求, 兼具高热导率和优异力学性能的氮化硅陶瓷作为功率半导体器件的首选散热基板材料受到了广泛关注。目前氮化硅陶瓷热导率的实验值与理论值存在较大差距, 高温、长时间保温的制备条件不仅会使晶粒过分长大,削弱其力学性能, 而且会造成成本高企, 限制了其规模化应用。晶格氧缺陷是影响氮化硅陶瓷热导率的主要因素, 通过筛选非氧化物烧结助剂降低体系中的氧含量, 调节液相的组成和性质并构建“富氮-缺氧”的液相, 调控液相中的溶解析出过程, 促进氮化硅陶瓷晶格氧的移除及双峰形貌的充分发育, 从而实现氮化硅陶瓷热导率-力学性能的协同优化是目前研究的热点。本文基于元素分类综述了当前国内外开发的非氧化物烧结助剂体系, 着重从液相调节和微观形貌调控的角度介绍了非氧化物烧结助剂改善氮化硅陶瓷热导率的作用机理, 分析了晶粒发育、形貌演变规律和晶格氧移除机制, 并展望了高导热氮化硅陶瓷的未来发展前景。
异质外延为金刚石晶圆合成提供了一个有效的实现路径, 而Ir衬底上金刚石形核生长技术经过20多年的发展已经有能力制备最大直径为3.5英寸的晶体, 开启了金刚石作为终极半导体在电子信息产业应用的大门。然而,表面形核、偏压技术窗口、金刚石外延生长等一系列发生在异质衬底上的问题都需要从生长热力学的角度给予解释。本研究针对化学气相沉积气氛中金刚石如何实现外延形核与生长这一关键问题, 利用第一性原理计算从原子尺度对金刚石形核生长过程展开了系列探究。研究结果如下: C原子在Ir衬底表面位点吸附比在体相位点吸附更稳定, 表明无偏压条件下金刚石形核只能在衬底表面发生; 离子轰击作用下非晶氢化碳层中sp3杂化C原子个数随着离子动能的增加呈现先增大后减小的变化规律, 证实了金刚石高密度形核存在一定的离子动能与偏压大小窗口; 金刚石沿着Ir衬底外延生长时界面结合能最低(约为-0.58 eV/C), 意味着界面结合能是决定外延形核生长的主要热力学因素。本研究阐明了偏压辅助离子轰击促进金刚石单晶外延生长的热力学机制, 对于指导金刚石及其他碳基半导体生长具有重要意义。
高熵过渡金属氮化物(HENs)具有热稳定性, 抗腐蚀、抗氧化性以及优异的力学性质, 可用作结构部件及运动部件的表面防护薄膜。然而, 受HENs组元多样性的影响, 宽泛可调的金属组分与HENs力学性质之间的映射关系相当复杂。本工作以(NbMoTaW)Nx薄膜为研究对象, 基于磁控溅射方法调节薄膜生长过程中氮气流量, 制备了不同氮含量的(NbMoTaW)Nx (x = 0, 0.59, 0.80, 0.95)薄膜, 研究了(NbMoTaW)Nx薄膜的成分、结构、形貌与性能, 并对薄膜力学性质的主要影响机制进行了系统探究。结果表明, 通过调节氮空位, 实现了对氮原子及金属原子亚晶格畸变度的协同调控, 得益于氮原子和金属原子亚晶格的高畸变度, (NbMoTaW)N0.80样品具有最高的硬度与最好的耐磨损性能。排除电子结构、残余应力、晶粒尺寸等力学性质影响因素后, 进一步确认了HENs薄膜晶格畸变度与力学性质之间的直接关系。本研究寻找到一条简洁的晶格畸变度调控策略, 为调节、优化氮化物薄膜性能, 进而更好地解决复杂服役环境下防护薄膜的机械损伤问题提供了新的思路。
迟滞效应是影响钙钛矿太阳能电池性能和稳定性的重要问题, 离子迁移和由此产生的界面离子积累是引起迟滞效应最重要的原因之一。本研究采用上转换发光纳米材料(Upconversion Luminescent Nanoparticles, UCNP)修饰电子传输层/钙钛矿活性层的界面及本征钙钛矿活性层, 系统探究了UCNP对钙钛矿的形貌、结构、光谱/光电性能和离子迁移动力学的影响。结果表明: 钙钛矿活性层经过UCNP修饰后器件的光电转换效率(Power Conversion Efficiency, PCE)最佳(16.27%), 而且迟滞因子(Hysteresis Factor, HF)得到显著改善(0.05)。进一步采用回路切换瞬态光电技术系统探究了钙钛矿太阳能电池不受光生载流子干扰的离子迁移动力学过程, 证明UCNP在光电转换过程中起到抑制离子累积和迁移的双重作用: 一方面UCNP可以形成阻隔层, 阻碍离子累积; 另一方面, UCNP可以在退火过程中进入到钙钛矿体相晶界处, 阻碍离子迁移, 使恢复电压从0.43 V降低到0.28 V。极化诱导缺陷态模型解释了离子-载流子相互作用机制, 阐释了UCNP抑制钙钛矿光伏器件迟滞效应的机理。本研究可以为调控钙钛矿太阳能电池迟滞提供一种有效的解决方案。
为进一步拓展先进陶瓷材料在直升机结构领域的应用, 本文对国内外直升机结构用先进陶瓷材料进行了审视和回顾, 重点关注直升机能量冲击防护部位、能量转换部件及腐蚀防护区域等特定结构部位用各类先进陶瓷材料, 对比分析国内外先进陶瓷材料在直升机上述特定结构部位的应用差距, 并提出未来发展建议。高速动态冲击能量防护部位应发展反应烧结曲面一体化成型的非透明装甲陶瓷材料和多晶透明装甲陶瓷材料, 低能量冲击防护部位应发展与环氧树脂基基材兼容的金属陶瓷复合涂层, 热能冲击防护部位应发展陶瓷基/树脂基混杂复合材料(Hybrid Ceramic Matrix Composite/Polymer Matrix Composite, HCMC-PMC), 机械能与电能转换部件应发展以高性能微型压电陶瓷薄膜功能器件及柔性混合电子结构复合材料为代表的多功能复合材料, 电磁能与热能转换部件应发展与环氧树脂基复合材料兼容的纤维增强吸波陶瓷基复合材料, 腐蚀防护区域应发展高性能耐磨腐蚀防护用溶胶-凝胶涂层。同时, 应大力构建直升机装备高速动态能量冲击防护机理及防护材料抗弹击性能优化机制, 并发展垂直起降飞行器多功能复合材料数字试验验证技术, 以显著缩短先进陶瓷材料的研发及装机应用周期并降低验证成本。
纳米TiO2具有高催化活性、高化学稳定性、成本低廉和安全无毒等优势, 是目前广泛使用的一类光催化剂, 但较大的禁带宽度和较高的光生电子-空穴复合速率使其光子利用率偏低。本研究利用微刻蚀法设计合成了二维TiO2纳米片, 并进一步与Ru复合, 构建了三明治结构Ru@TiO2高效光催化剂。采用不同表征手段研究了三明治结构Ru@TiO2的表面形貌、电子结构、光电特性和光降解盐酸四环素的性能。结果表明: 插入Ru将TiO2的光响应范围由紫外光区拓展至整个可见-近红外光区, 光子吸收和载流子分离效率得以提升,同时提高了体系光催化活性。模拟太阳光(AM 1.5G, 100 mW·cm-2)照射80 min, 三明治结构Ru@TiO2高效光催化剂对盐酸四环素的降解效果出色, 降解效率达到91.91%。本研究为TiO2基高效光催化剂结构设计提供了一条有效途径。
碳化物超高温陶瓷具有高熔点(>3000 ℃)、高硬度、低热导率、优异的耐高温性和良好的化学稳定性等优点, 是高超声速飞行器热防护系统的理想涂层材料。本文概述了碳化物超高温陶瓷(TiC、ZrC、HfC、NbC、TaC)的结构与性质, 总结了化学气相沉积法、等离子喷涂法和固相反应法制备碳化物超高温陶瓷涂层的研究进展, 分析了涂层微观结构、组分、结构设计以及热流密度对烧蚀行为的影响。研究表明, 添加第二相形成多元复合涂层和采用多层结构设计, 可以有效提升碳化物超高温陶瓷涂层的抗烧蚀性能。添加第二相形成复杂氧化物, 可使烧蚀后的氧化层适度烧结, 从而获得良好的结构完整性和阻氧性能。采用梯度分层和多层功能结构设计, 有效缓解了涂层热应力, 抑制了裂纹扩展, 并促进了不同层间的协同增强作用。最后, 结合研究现状, 对碳化物超高温陶瓷抗烧蚀涂层发展面临的挑战与机遇进行了展望。
针对高速飞行器对于防热/承载一体化超高温陶瓷基复合材料的迫切需求, 以及现有反应型HfC先驱体存在的成本高、效率低和致密效果差等不足, 本研究将HfC亚微米粉体配制成稳定的陶瓷浆料, 利用浆料加压浸渍辅助先驱体浸渍裂解(PIP)工艺制备了HfC基体均匀分布的C/HfC-SiC复合材料, 探讨了HfC含量对于复合材料微观结构、力学与烧蚀性能的影响。结果表明, 当HfC实际体积分数为13.1%~20.3%时, 复合材料密度为2.20~2.58 g·cm-3, 开孔率约为5%。通过单层碳布加压浸渍陶瓷浆料, HfC颗粒能够分散到纤维束内部, 且在复合材料中分布比较均匀。提高HfC含量会降低复合材料纤维含量, 其力学性能也呈现出降低趋势。当HfC体积分数为20.3%时, 复合材料的密度、拉伸强度和断裂韧性分别为2.58 g·cm-3、147 MPa和9.3 MPa·m1/2; 经氧乙炔焰烧蚀60 s后, 复合材料的线烧蚀率和质量烧蚀率分别为0.0062 mm/s和0.005 g/s, 烧蚀过程中形成的熔融相HfxSiyOz能覆盖在材料表面, 起到良好的保护作用。
随着航空发动机涡轮前燃气入口温度的不断攀升, 陶瓷基复合材料(Ceramic Matrix Composite, CMC)以其轻质、高强、抗氧化、对裂纹不敏感、耐温性能优异等特点, 成为新一代航空发动机高温部件的首选基体材料。但CMC存在抗高温水氧侵蚀性能不足等问题, 发动机CMC热端部件用热喷涂涂层成为亟待解决的技术瓶颈。本文结合国外航空发动机热端部件选材方案的更迭及工程应用实例, 分析了发动机热端部件采用高温合金+气膜冷却+热障涂层方案的技术局限性, 明确了CMC+适量气膜冷却+环境障碍涂层方案的技术优势; 综述了CMC用热与环境障碍涂层(Thermal and Environmental Barrier Coatings, TEBCs)和环境障碍可磨耗封严涂层(Environmental Barrier Coatings-Abradable Sealing Coatings, EBCs-ASCs)的研究进展、应用情况以及近些年国内外学者的研究成果; 辨析了面向更高温燃气来流时热喷涂环境障碍涂层面临的机遇与挑战, 为后续TEBCs的组分和结构设计以及制备明确了方向, 并对今后研究工作的重点进行了展望。
β-FeSi2作为一种绿色环保、高温抗氧化的热电材料, 在工业余热回收领域具有潜在的应用价值。虽然磷(P)是一种理想的β-FeSi2硅(Si)位的n型掺杂元素, 但是P掺杂β-FeSi2易出现第二相, 从而限制了其热电性能的提升。本研究采用感应熔炼法合成了一系列FeSi2-xPx (x=0, 0.02, 0.04, 0.06)样品, 极大程度地避免了第二相的产生, 并系统研究了P掺杂对β-FeSi2热电输运性能的影响。结果表明, P在β-FeSi2中的掺杂极限约为0.04, 与前期的理论缺陷计算结果相符。此外, P掺杂优化了β-FeSi2的热电性能, 在850 K时, FeSi1.96P0.04的最高热电优值ZT约为0.12, 远高于已有的研究结果(673 K, 最高ZT仅为0.03)。然而, 与同为n型Co和Ir掺杂的β-FeSi2相比(其载流子浓度可达1022 cm-3), P掺杂β-FeSi2的载流子浓度较低, 最高仅为1020 cm-3, 这导致其电声散射效应较弱, 从而限制了整体热电性能的提升。若能提高其载流子浓度, 则热电性能有望得到进一步提升。
反铁电材料由于电场诱导的反铁电-铁电相变而在高性能介质储能电容器应用中显示出极大的潜力。然而, 场致相变带来大的极化滞后使得反铁电材料难以同时获得高储能密度(Wrec)和高储能效率(η)。本工作通过在0.76NaNbO3-0.24(Bi0.5Na0.5)TiO3中引入第三组元Bi(Mg0.5Ti0.5)O3调控其弛豫特性, 改善了NaNbO3基无铅反铁电陶瓷的储能性能。采用传统固相合成法制备了(0.76-x)NaNbO3-0.24(Bi0.5Na0.5)TiO3-xBi(Mg0.5Ti0.5)O3无铅弛豫反铁电陶瓷材料, 并研究了该材料的相结构、微观形貌以及介电、储能和充放电特性。结果表明, 引入Bi(Mg0.5Ti0.5)O3在不改变基体反铁电正交R相结构的基础上明显增强了陶瓷的介电弛豫特性, 显著减小了陶瓷的极化滞后性。特别是在x=0.050组成中实现了具有极低滞后的类线性电滞回线。同时, 陶瓷的显微形貌还得到明显改善, 介电常数降低, 击穿场强显著提高。因此, x=0.050的组成在30 kV/mm的中等电场下同时获得了高的储能密度Wrec=3.5 J/cm3与储能效率η=93%。此外, x=0.050组成还显示出优异的充放电特性, 在20 kV/mm下具有高功率密度PD=131(1±1%) MW/cm3、高放电能量密度WD=1.66(1±6%) J/cm3以及快的放电速率t0.9<290 ns。该充放电特性在25~125 ℃的宽温区内保持良好的稳定性。这些研究结果表明, 0.71NaNbO3-0.24(Bi0.5Na0.5)TiO3-0.050Bi(Mg0.5Ti0.5)O3陶瓷是一种非常有应用潜力的高功率储能电容器介质材料。
光伏切割硅废料——硅泥, 因其低成本、二维片状结构和高比容量(4200 mAh·g-1)的优势成为300 Wh·kg-1以上高能量密度储能电池核心硅碳负极材料的理想原料之一。然而, 硅泥存在成分复杂、粒径较大、导电性差、稳定性低和电化学性能差的问题, 需要进行系统改性处理。本文综述了硅泥在锂离子电池中的应用研究进展。首先, 分析了硅泥中金属杂质和非金属杂质对电池性能的重要影响。其中金属杂质可通过磁选和酸洗去除, 非金属杂质可通过液-液萃取和热处理去除。其次, 详细阐述了纯化后硅泥的原始性能和改性方法。通过硅泥纳米化可以抑制其膨胀, 其中包括研磨、刻蚀、电热冲击和合金-脱合金等方式; 通过直接元素掺杂硅和掺杂硅表面碳层来提高导电性; 通过构建惰性层、导电层和一定作用的官能团等表面改性提高稳定性; 还可以通过硅碳复合获得稳固的机械支撑和保护。最后, 提出了基于硅泥为原料的硅基负极面临的挑战和研发方向, 展望了未来发展前景, 旨在为硅泥变废为宝提供参考, 推动高能量密度锂离子电池快速发展。
新型高熵硼化物陶瓷具有优异的高温稳定性、低热导率等优点, 在高温热防护领域具有广阔的应用前景。本研究采用硼/碳热还原法结合热压烧结技术在1900 ℃下制备了(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C高熵硼化物陶瓷, 并研究了B4C第二相含量对其力学及抗氧化性能的影响规律。结果表明, B4C均匀分布在高熵基体中, 有效改善了高熵陶瓷的相对密度和力学性能。当B4C体积分数为20%时, 复相陶瓷的抗弯强度、断裂韧性以及维氏硬度均达到最高, 分别为(570.0±27.6) MPa、(5.58±0.36) MPa·m1/2和(24.6±1.1) GPa。微观结构分析表明, B4C能够钉扎晶界、细化晶粒, 并能够引入裂纹偏转、分支等增韧机制, 最终实现复相陶瓷的强化及韧化。此外, 利用静态氧化实验, 揭示了B4C含量对复相陶瓷800~1400 ℃抗氧化性能的影响。当B4C体积分数不小于20%时, 其氧化生成的玻璃相B2O3能够均匀包裹(Zr, Hf)O2、TiOx及Ta2O5等高熵基体对应的氧化物, 从而在陶瓷表面形成均匀致密的氧化层, 抑制氧向基体内部扩散, 降低氧化层厚度并提升复相陶瓷的抗氧化性能。本工作能够为高熵硼化物陶瓷的力学及抗氧化性能研究提供实验依据和数据支撑。
近年来, 湿度传感器在食品安全、土壤监测等领域的应用引起了广泛关注。传统湿度传感器具有稳定性好、灵敏度高等优点, 但大部分湿度传感系统通常采用有线连接和外接庞大设备来将湿度信号转换为可识别的波形, 无法对湿度信息的变化进行实时的可视化监测。将湿度信息直接转换为肉眼可观测的颜色信号为上述问题提供了一种理想解决方案。本研究将湿度传感器与电致变色器件集成一体来制备智能可视化湿度指示系统, 通过将湿度信号转换为电压信号来驱动电致变色器件(Electrochromic devices, ECDs), 从而实现系统稳定可逆的颜色变化。采用三氧化钨(WO3)作为负极、锌箔(Zn)作为正极制备的ECDs会根据湿度传感器的输出电压的变化来转变不同的工作状态, 从而产生肉眼可观测的颜色信号。采用紫外-可见分光光度计与电化学工作站对ECDs的电化学性能以及电致变色性能进行研究和表征。随后, 通过示波器和湿度发生平台对调理电路性能进行分析。结果表明: 智能电致变色型湿度指示器具有良好的稳定性和快速的响应性能, 其中, 着色时间与褪色时间仅为7.5和4.5 s, 并且在300个循环后, 光学调制幅度(ΔT)与初始值相比基本保持不变(保持率可达95%以上)。因此, 这种设计新颖、结构简单的可视化湿度系统在人工智能、智能农业等领域具有广阔的应用前景。
铌酸铋钙(CaBi2Nb2O9, CBN)是一种典型的铋层状结构压电材料, 具有高居里温度(约943 ℃)、高稳定性等特点, 是600 ℃以上高温压电振动传感器的重要候选功能元件, 但其压电系数和高温电阻率较低, 严重制约了CBN在高温压电振动传感器领域的实际应用。为了提高CBN压电陶瓷的高温稳定性, 采用固相法制备了W/Cr共掺杂的CaBi2Nb1.975W0.025O9-x%Cr2O3(CBNW-xCr, 0<x≤0.2)单相铋层状结构压电陶瓷, 研究了W/Cr元素共掺杂对晶体结构和电学性能的影响。结果表明: W/Cr元素共掺杂使压电陶瓷晶体结构由正交晶系向四方晶系转变, 晶体结构畸变程度增强, 并且压电性能和绝缘性能显著提高。当x=0.1时, CBNW-0.1Cr压电陶瓷的居里温度为931 ℃, 压电系数为15.6 pC/N, 600 ℃时电阻率达到106 Ω∙cm量级, 介电损耗仅为0.029, 该体系在高温压电领域有重要的潜在应用前景。
探索能够有效抵抗1300 ℃及以上温度钙镁铝硅酸盐(Calcium-Magnesium-Aluminum-Silicate, CMAS)腐蚀的新材料是近年来先进航空发动机用环境障涂层研究的重点任务。本工作围绕具有超强CMAS腐蚀抗力的YAG(Y3Al5O12)/Al2O3体系, 采用大气等离子喷涂(Atmospheric Plasma Spraying, APS)技术制备了具有共晶成分的YAG/Al2O3涂层。通过在1100、1300和1500 ℃对制备态涂层进行热处理, 获得了具有不同微观结构的YAG/Al2O3涂层。利用不同表征手段研究了YAG/Al2O3涂层抵抗1300 ℃ CMAS腐蚀的性能及微观结构对涂层腐蚀抗性的影响。研究结果发现, 经不同温度热处理的YAG/Al2O3涂层与CMAS的反应产物均为石榴石结构固溶体、CaAl2Si2O8和Ca2MgSi2O7。腐蚀机制研究发现, 1100 ℃热处理YAG/Al2O3涂层与CMAS反应界面的近连续分布石榴石固溶体层可有效阻隔CMAS腐蚀元素的扩散; 1500 ℃热处理YAG/Al2O3涂层晶粒尺寸的增加及晶界数量的减少可降低涂层材料在CMAS中的溶解速率, 二者均可通过影响腐蚀过程中的离子传输速率而影响各生成物的竞争析出, 进而提升涂层的CMAS腐蚀抗力。本工作为YAG/Al2O3涂层热处理工艺优化提供了借鉴, 并为通过微观结构优化调控YAG/Al2O3涂层的CMAS腐蚀抗力提供了新思路。
鉴于平板式固体氧化物燃料电池(SOFC)电堆对低面电阻、高稳定性阴极接触材料的需求, 本研究阐明了LaNi0.6Fe0.4O3(LNF)颗粒尺寸调控对导电和SOFC单电池性能演变的影响机制, 优化了LNF预处理工艺, 降低了接触组件面电阻,提升了SOFC单电池性能及热循环稳定性。结果表明:预压造粒的样品(LNF-2)与高温烧结预处理的样品(LNF-3)的面电阻更小, 分别为0.074和0.076 Ω·cm²; 在750 ℃施加1 A/cm2电流负载后, 能够更快地进入稳态, 并保持颗粒尺寸稳定。其中, LNF-2单电池在750 ℃下的峰值功率密度0.94 W/cm2较未处理的LNF的 0.66 W/cm2高, 但在热循环过程中性能衰减较大,下降了20%; 而LNF-3单电池在20次热循环后峰值功率密度仅下降了4%。本研究对高可靠SOFC电堆装配及其长寿命稳定运行具有指导及参考价值。
压电叠层驱动器具有低驱动电压、大位移的特点, 被广泛应用于诸多领域。作为目前压电叠层驱动器中最常使用的材料, 软性锆钛酸铅(PZT)陶瓷较大的介电常数和损耗往往会导致较高的功耗和发热量, 进而影响驱动器的疲劳特性和稳定性。为了制备出低发热量、适用于压电叠层驱动器的压电陶瓷, 本工作选取Mn掺杂(摩尔分数)的Pb(Sb1/2Nb1/2)0.02Zr0.51Ti0.47O3-0.6%MnCO3(PSN-PZT)硬性压电陶瓷作为基体材料, 通过掺入一定含量的Li2CO3烧结助剂来降低陶瓷的烧结温度, 并采用高于居里温度极化工艺进一步提升陶瓷的电学性能。最后采用该材料, 利用流延工艺制备出压电叠层驱动器, 并与相同工艺制备的Pb(Mg1/3Nb2/3)0.25(Ti0.48Zr0.52)0.75O3(PMN-PZT)驱动器进行比较。 结果显示,Li2CO3通过引入液相烧结的方式将PSN-PZT陶瓷烧结温度降低至1050 ℃。当Li2CO3含量为0.1%(质量分数)时, 高于居里温度极化的PSN-PZT陶瓷电学性能最优, 其压电系数(d33)和2 kV/mm电场下的单极应变分别为388 pC/N和0.13%。在200 Hz下, PSN-PZT驱动器温升比PMN-PZT驱动器低大约20 ℃, 且经过5×106次循环后应变仅降低6%。这表明Li2CO3低温烧结的PSN-PZT陶瓷不仅具备不错的压电性能, 而且在发热和疲劳特性方面有较大优势, 在大功率、高频等苛刻工况中有潜在的应用前景。
近年来, 钙钛矿太阳能电池发展迅速, 其光电转换效率(Power Conversion Efficiency, PCE)已经提高到26.1%, 但是柔性钙钛矿太阳能电池(Flexible Perovskite Solar Cells, F-PSCs)的机械弯曲和环境稳定性仍然是其商业化的主要障碍。本研究通过添加琼脂糖(Agarose, AG)以改善薄膜的质量和结晶性能, 系统探究了AG对钙钛矿的作用机理, 组装成的F-PSCs的PCE和机械弯曲及环境稳定性能。研究发现当AG添加浓度达到最优值3 mmol/L时, 薄膜表面变得更为致密平滑, 钙钛矿结晶度和吸光度增加。此时器件的陷阱态密度降到最低, 电荷传输电阻低至2191 Ω, 光电性能达到最佳, PCE由15.17%提升至17.30%。进一步引入TiO2纳米颗粒(0.75 mmol/L), 与AG(3 mmol/L)共同作用, 可以提供刚性骨架结构, 增强钙钛矿层的机械性能和环境稳定性。循环弯曲1500次(半径为3 mm)后, AG/TiO2共添加器件可保持初始PCE的84.73%, 远高于空白器件的9.32%; 在空气中放置49 d后, 该器件仍可保持初始PCE的83.27%, 优于空白器件的62.21%。该研究成果为制备高效且稳定的F-PSCs提供了可能性。
SiC陶瓷具有高强度和良好的热稳定性, 在航空航天、热端部件等领域有着广泛的应用前景。随着对大尺寸和复杂形状SiC陶瓷需求的日益增长, 3D打印技术在制造周期、成本及可靠性等诸多方面明显优于传统减材、等材制造方法, 越来越受到重视。3D打印方法众多, 各具特点: 立体光刻(Stereolithography, SLA)技术可以实现高精度和优良的表面质量, 但实际操作中往往需要设计支撑结构, 再加上残余应力和低固含量等问题, 极大限制了其发展; 激光选区烧结(Selective laser sintering, SLS)技术具有较强的材料普适性, 适用于高分子、金属和陶瓷等多种材料, 可实现大尺寸快速成形, 且制造成本较低, 但其成形素坯表面质量较低, 需进行后续加工; 熔融沉积(Fused deposition modeling, FDM)技术制备的SiC陶瓷材料可借助反应烧结实现致密化, 但成形素坯存在层间结合强度低、表面有较明显条纹等缺陷, 并且成形速度相对较慢, 不适合构建大型零件, 因此在实际生产中受到限制。本文综述了近五年来3D打印SiC陶瓷的最新研究进展, 讨论了成形素坯的后续高温致密化处理方法及其基本物理性能, 并展望了3D打印SiC陶瓷材料的未来前景。新型3D打印技术及其与多种打印方式的融合将在陶瓷宏微观结构的精细化中发挥重要作用, 或将成为未来的重要发展趋势。
四氧化三铁(Fe3O4)磁性纳米颗粒因其制备简单, 在外加磁场作用下具有靶向性,并且表面易接枝等特性, 可作为被动靶向载体应用于基因治疗领域。本研究采用溶剂热法制备纳米颗粒, 并调控堆积生长时间, 制得粒径在4~9 nm范围内可控的油相Fe3O4纳米颗粒; 使用内消旋-2,3-二巯基丁二酸(DMSA)二次取代其表面的油酸分子, 使其具备良好的水相分散性; 通过酰胺化反应在其表面接枝支链型聚乙烯亚胺(PEI), 最终得到Fe3O4-DMSA-PEI磁性纳米颗粒。研究发现, Fe3O4-DMSA-PEI磁性纳米颗粒的表面Zeta电位高达(52.50±1.94) mV, 具有一定的超顺磁性(14.48 emu/g, 1 emu/g=1 A∙m2/kg)。磁性纳米颗粒与质粒DNA的质量比为15 : 1时可完全阻滞DNA在凝胶上的电泳, 装载量高达6.67%。本研究制备的Fe3O4-DMSA-PEI磁性纳米颗粒具有一定的基因负载能力, 有望作为基因载体应用于基因转染领域。
在电解水制氢过程中, 析氢反应(HER)和析氧反应(OER)的缓慢电催化动力学限制了其能量转换效率。高熵材料具有独特的结构特征和优异的性能, 是一种潜在的电解水催化剂, 有可能取代传统的金属氧化物和贵金属。由于金属与非金属之间的不相容性, 关于高熵化合物特别是高熵金属磷化物合成的报道很少。本研究以柠檬酸为络合剂、磷酸二氢铵为磷源, 采用低温溶胶-凝胶法, 通过添加不同组元金属合成了一系列以碳为基底的高熵合金磷化物纳米颗粒。在1 mol·L-1的KOH介质中, FeCoNiMoCeP/C表现出良好的电解水性能, 在电流密度为10 mA·cm-2条件下, FeCoNiMoCeP/C电极电催化HER和OER所需的过电位分别为119和240 mV。在全解水研究中, FeCoNiMoCeP/C表现出优异的催化活性。在电流密度为10 mA·cm-2条件下, FeCoNiMoCeP/C同时用作阴极和阳极的电解水反应所需过电位仅为1.53 V。这是由于高熵磷化物催化剂原子之间的协同作用可以提供更多的反应位点, 增加反应活性和选择性。本研究可拓展高熵合金在电催化领域的潜在应用范围。
将CO2高效转化为有价值的化学品(如CO和HCOOH等)是缓解环境问题、实现碳中和的重要措施。然而CO2还原反应(CO2RR)有着产物多样和路径复杂的特点, 再加上目前难以确定影响CO2RR活性的真正因素, 使得设计对特定产物有高选择性和高活性的催化剂十分具有挑战性。本研究从第一性原理出发, 系统研究了3d过渡金属单原子掺杂石墨烯单个空位(TM@CSV)和双空位(TM@CDV)电催化还原CO2的潜力, 具体涵盖基底的稳定性、中间产物热力学吸附以及与之竞争的析氢反应(HER)。通过对Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu和Zn掺杂石墨烯缺陷后形成的20种催化剂进行筛选, 发现Sc原子掺杂石墨烯单个空位的Sc@CSV和Sc、Ti原子掺杂石墨烯双空位的Sc@CDV和Ti@CDV同时具备吸附CO2分子和抑制HER的能力。其中Sc@CDV对HCOOH表现出最佳的活性和选择性, 速率决定步骤的吉布斯自由能差仅为0.96 eV。最后, 通过电子结构分析进一步揭示了Sc@CDV优于其他催化剂的原因是Sc@CDV调整了费米能级附近的活性电子态, 从而实现对CO2的高效还原。
HfxTa1-xC具有高熔化温度、高硬度、高强度, 以及导电、导热性好等优异性能, 是2000 ℃以上热防护领域极有潜力的候选材料, 但其力学性质与熔化温度随组分变化规律尚不清晰。本研究基于特殊准随机结构(SQS)方法和第一性原理计算, 从共价键强度、价电子浓度(VEC)的微观角度系统地探讨了HfxTa1-xC系固溶体力学性质随组分的变化机理。力学性质计算结果表明: 5种组分(HfC、Hf0.75Ta0.25C、Hf0.5Ta0.5C、Hf0.25Ta0.75C与TaC)中, Hf0.25Ta0.75C固溶体具有最高的弹性模量和剪切模量, 这主要归因于: (1)该组分具有最高的共价键强度; (2)来自C的p轨道和来自Hf或Ta的d轨道之间的特殊键合在VEC=8.75(Hf0.25Ta0.75C)附近被完全填充, 它们强烈抑制形状变化。研究还使用基于从头算分子动力学(AIMD)的分子动力学Z方法计算了HfxTa1-xC系固溶体的熔化曲线。结果显示HfxTa1-xC系固溶体熔化温度反常增加的现象的确存在, 且在Hf0.5Ta0.5C处熔化温度最高(4270 K), 这主要归因于构型熵与共价键强度的协同作用。本研究结果为高熔化温度及高力学性能HfxTa1-xC系固溶体组分的实验选择及其耐高温涂层应用等提供了理论指导, 也为其他过渡金属碳化物研究提供了参考。
聚合物转化SiCN陶瓷得益于质量轻和热膨胀系数低等优势, 在电磁波吸收领域受到广泛关注。由于电磁损耗机制单一及耐温性不足, SiCN陶瓷的吸波性能有待进一步提高, 借助多组元协同作用增强吸波性能是可行的途径之一。本工作对聚氮硅烷结合不同化合物进行单源化改性得到SiHfCN、SiHfCN-C、SiHfCN-B和SiHfCN-N等四种纳米陶瓷。结果表明:SiHfCN中由于Hf源的含氧量高达13.5%(质量分数), 生成HfO2和SiO2, 使其最低反射损耗(Reflection loss, RLmin)仅为-13.8 dB, 有效吸收带宽(Effective absorption bandwidth, EAB)仅为0.42 GHz。相比于SiHfCN, 含Hf聚合物分别与C源、B源和N源共改性增加了聚合物转化陶瓷的界面和导电相, SiHfCN-C、SiHfCN-B和SiHfCN-N的介电常数实部和虚部分别提高了1.4~1.8和2.7~3.9倍, RLmin分别为-50.6、-57.3和-63.5 dB, EAB分别为3.53、3.99和4.01 GHz, 吸波性能得到了显著改善。SiHfCN-C中大量的自由碳抑制了HfO2的生成, 增强了电导损耗。SiHfCN-B中生成了B-N和B-C键, 且析出的纳米棒状HfSiO4提供了更多的异质界面, 增强了极化损耗。SiHfCN-N中因引入大量N使N-C键数量增加, 强化了偶极子极化损耗, 同时生成纳米碳片, 不仅可以增强电导损耗, 而且提供大量界面, 改善了阻抗匹配并增强了界面极化, 因而SiHfCN-N具有最佳的吸波性能。