甲烷是对全球温升贡献仅次于二氧化碳的温室气体, 且其全球增温潜势是CO2的80倍以上。在全球变暖和大气中甲烷含量不断增长的背景下, 完全催化氧化大气甲烷对于减缓温室效应和全球变暖具有重要价值。然而, 由于甲烷具有较高的结构稳定性, 在温和条件下将其催化氧化一直面临巨大的挑战。本文综述了近年来甲烷完全氧化在热催化、光催化以及光热协同催化三种反应条件下的研究进展, 热催化中高温增大了能耗并加速了催化剂的失活, 开发低温反应条件下的催化剂已经成为甲烷完全热催化的重点; 光催化提供了一种常温常压条件下利用光能氧化甲烷的方法, 但是相对热催化来说反应速率较低; 光热协同催化在光能和热能的协同作用下, 可实现温和条件下的甲烷高效完全催化氧化, 表现出潜在的应用前景。本文就三种反应催化剂的发展进行综述, 系统分析了不同反应的原理, 以及不同反应条件下甲烷完全催化氧化的优势与不足, 同时总结了催化氧化甲烷所面临的挑战, 并提供潜在的解决方案, 期望为今后的甲烷氧化研究提供借鉴。
随着锂离子电池的发展和钠离子电池的兴起, 硬碳材料作为一种新型负极材料, 受到了广泛关注。硬碳来源丰富, 价格便宜, 具有比锂离子电池石墨负极更高的储锂容量和优异的倍率性能, 并且是最有商业化潜质的钠离子电池负极材料。然而, 硬碳普遍存在电池首周库仑效率低的问题, 且对于硬碳的储锂/钠机制仍存在争论, 其比容量仍有较大的提升空间。近年来, 研究人员围绕硬碳负极材料的电化学机理展开了各种研究和模型假设, 针对硬碳负极存在的问题, 提出了各种解决策略。本文介绍了硬碳的基本结构和常用的制备方法, 并结合硬碳的优势, 梳理了硬碳在锂离子电池和钠离子电池中的应用情况, 重点介绍了其在快充、包覆等细分领域的应用进展, 并分别针对硬碳提升比容量和改善首周库仑效率的需求, 归纳了孔结构设计、元素掺杂、优化材料与电解液界面等不同改性策略。
半导体材料是现代科技发展和产业革新的核心, 随着高频、高压、高温、高功率等工况的日趋严峻及“双碳”目标的需要, 以新型碳化硅(SiC)和氮化镓(GaN)等为代表的第三代半导体材料逐步进入工业应用。半导体产业的贯通以及市场规模的快速扩大, 导致摩尔定律正逐渐达到极限, 先进封装互连将成为半导体行业关注的焦点。第三代半导体封装互连材料有高温焊料、瞬态液相键合材料、导电胶、低温烧结纳米Ag/Cu等几个发展方向, 其中纳米Cu因其优异的导电导热性、低温烧结特性和良好的可加工性成为一种封装互连的新型方案, 具有低成本、高可靠性和可扩展性, 近年来从材料研究向产业链终端应用贯通的趋势非常明显。本文首先介绍了半导体材料的发展概况并总结了第三代半导体封装互连材料类别; 然后结合近期研究成果进一步围绕纳米Cu低温烧结在封装互连等电子领域中的应用进行重点阐述, 主要包括纳米铜粉的粒度、形貌、表面处理和烧结工艺对纳米铜烧结体导电性能和剪切性能的影响; 最后总结了目前纳米铜在应用转化中面临的困境和亟待解决的难点, 并展望了未来的发展方向, 以期为低温烧结纳米铜领域的研究提供参考。
随着高速飞行器朝着更宽空域、更长时间和更高速度的方向发展, 对飞行器的鼻锥、前缘和发动机燃烧室等关键结构的热防护性能提出了更加严苛的要求, 发展在极端环境下使用的高性能热防护材料是当前的研究重点。超高温陶瓷复合材料具有优异的抗氧化烧蚀性能, 是一类极具应用潜力的非烧蚀型热防护材料。然而, 本征脆性问题限制了超高温陶瓷复合材料的工程化应用, 需通过组分结构调控对其进行强韧化。同时, 飞行器有效载荷提升也对超高温陶瓷复合材料提出了轻量化的要求。本文系统概述了超高温陶瓷复合材料近年来取得的主要研究进展, 包括压力烧结、泥浆浸渍、前驱体浸渍裂解、反应熔渗、化学气相渗透/沉积与“固-液”组合工艺等制备方法, 颗粒、晶须、软相物质、短切纤维和连续纤维等强韧化方法及其机制, 抗氧化烧蚀性能与机理, 以及轻量化设计等。讨论了超高温陶瓷复合材料组分、微结构和性能之间的关系, 并指出了超高温陶瓷复合材料目前存在的挑战以及未来的发展趋势。
MXene是一大类二维过渡金属碳氮化合物, 其丰富的组分、二维原子层结构、金属电导和活性表面等特性使其与不同波段的电磁波(可见光、红外、太赫兹、微波波段等)产生独特的相互作用, 并衍生了多种电磁功能应用。在红外波段, MXene具有宽域的红外辐射特性, 活性表面使其具备可调的红外吸收。近年来, MXene的上述性质引起了广泛研究兴趣。本文首先对不同MXene组分的本征红外辐射特性及调控策略进行了系统总结, 并简要介绍其代表性红外应用, 重点讨论MXene在这些应用中的贡献和作用机制, 包括红外识别/伪装、表面等离激元、光热转换、红外光电探测等。最后, 对MXene红外功能应用的未来发展方向进行了展望。
随着以SiC和GaN为代表的第三代宽禁带半导体的崛起, 电力电子器件向高输出功率和高功率密度的方向快速发展, 对用于功率模块封装的陶瓷基板材料提出更高的性能要求。传统的Al2O3和AlN陶瓷由于热导率较低或力学性能较差, 均不能满足新一代功率模块封装的应用需求, 相较之下, 新发展的Si3N4陶瓷因兼具高强度和高热导率, 成为最具潜力的绝缘性散热基板材料。近年来, 研究人员通过筛选有效的烧结助剂体系, 并对烧结工艺进行优化, 在制备高强度高热导率Si3N4陶瓷方面取得一系列突破性进展。另外, 伴随覆铜Si3N4陶瓷基板工程应用的推进, 对其制成的基板的力、热和电学性能的评价也成为研究热点。本文从影响Si3N4陶瓷热导率的关键因素出发, 重点对通过烧结助剂的选择和烧结工艺的改进来提高Si3N4陶瓷热导率的国内外工作进行综述。此外, 首次系统总结并介绍了Si3N4陶瓷基板的介电击穿强度以及覆铜后性能评价研究的最新进展, 最后展望了高热导率Si3N4陶瓷基板的未来发展方向。
受到生物基因工程中“基因剪刀”的启发, “化学剪刀”作为一种重要的研究工具在材料结构编辑及应用研究中发挥着重要作用。本文对“化学剪刀”在材料结构编辑及应用方面的研究进展进行了评述。首先, 介绍了“化学剪刀”的概念和基本原理, 即指在保持初始材料主结构不变的条件下, 通过化学反应敲除、置换、修复或重构目标原子或结构单元, 从而定制化编辑材料晶格中的组成元素、晶体结构以及微观形貌, 最终实现特定的材料结构与功能。随后, 详细回顾了“化学剪刀”在材料结构编辑中的具体应用, 即如何利用化学剪切、化学修饰、化学合成和化学刻蚀与化学插层等结构编辑方法对材料结构进行精确调控和功能设计。最后, 对“化学剪刀”未来在材料结构编辑及应用的研究方向进行了展望。本评述详细介绍了“化学剪刀”在材料结构编辑及应用研究方面的研究进展和巨大潜力, 为探索和开发“化学剪刀”在材料领域的应用提供了有力的理论和实验支撑, 并有望推动相关材料领域的发展。
陶瓷基多孔结构既继承致密陶瓷材料耐高温、电绝缘、化学稳定的优异性能, 又兼具多孔结构低密度、高比表面积、低热导率的独特优势, 已被广泛应用于隔热、骨组织工程、过滤及污染物清除、电子元器件等领域。但是, 陶瓷基多孔结构的传统成孔方法在宏观尺度创造复杂几何外形与微纳尺度调控孔结构形态方面仍面临巨大挑战。近几十年来, 研究人员一直致力于创新陶瓷基多孔结构的加工成型方法, 以直写3D打印为代表的增材制造技术成为当前研究的热点, 并迅速发展出一系列成熟理论与创新方法。本文首先概述了陶瓷基多孔结构的传统成孔方法与增材制造成孔方法, 进一步详细介绍了直写组装成孔工艺过程, 主要包括假塑性墨水配方、固化策略、干燥及后处理, 分析了传统成孔方法与直写3D打印二者的组合技术在构筑陶瓷基多级孔结构方面的可行性, 总结了直写3D打印技术在制造复杂陶瓷基多孔结构领域的新观点、新进展和新发现, 最后结合陶瓷基多孔结构实际应用现状对直写3D技术的未来发展与挑战进行了展望。
开发新型低维材料在太赫兹电磁屏蔽与吸收领域的应用是一个极为重要的研究方向, 低维材料以其独特的电学、力学与电磁响应而有望创造出更加高效的电磁屏蔽与吸收方案。二维过渡金属碳化物、氮化物与碳氮化合物MXenes在低频波段已经展示出优异的电磁屏蔽与吸收性能, 尤其是MXenes兼具高电导率、低密度、高柔性等特点, 有利于未来太赫兹器件便携化与系统集成化。然而, 将MXenes太赫兹电磁屏蔽与吸收材料推向实际应用过程中, 面临着附着稳定性、环境稳定性、不耐高温等问题, 无法满足航空航天和第六代通信场景需求。此外,目前缺乏更加全面的太赫兹散射与吸收验证手段。针对上述问题,研究人员开展了广泛且深入的工作。本文回顾了近年来主流电磁屏蔽与吸收材料的主体构型与基础理论原理, 并重点介绍了多种MXenes及其复合物在薄膜与多孔结构下的太赫兹电磁屏蔽与吸收特性, 包括Ti3C2Tx、Mo2Ti2C3Tx、Mo2TiC2Tx、Nb4C3Tx、Nb2CTx, 并展望了MXenes作为太赫兹频段中电磁屏蔽与吸收材料所面临的挑战和机遇。
热致变色智能窗是通过在玻璃上沉积温度刺激响应型材料, 实现根据环境温度调控窗户玻璃的太阳光透过率, 减少建筑物能耗的节能窗户。二氧化钒(VO2)是一种典型的热致相变材料, 在~68 ℃发生金属-绝缘体相变, 相变前后伴随光学性能的显著变化, 在智能窗等多个领域有潜在的技术应用。然而, 当前VO2基热致变色智能窗的应用仍存在着相变温度(τc)偏高、可见光透过率(Tlum)低和太阳能调节效率(ΔTsol)不足等问题, 无法满足实际建筑节能的需求。为了解决这些问题, 研究人员开展了广泛而深入的工作。化学气相沉积法(Chemical vapor deposition, CVD)能够以合理的成本生产高质量、大面积的VO2薄膜, 受到研究者青睐。本文总结了近年来利用CVD技术制备VO2薄膜的研究进展, 系统介绍常压化学气相沉积、气溶胶辅助化学气相沉积、低压化学气相沉积、金属有机物化学气相沉积、原子层沉积和等离子体增强化学气相沉积等CVD工艺, 分析了反应物种类及比例、反应温度、压力、载体流量等因素对VO2薄膜质量的影响, 并结合元素掺杂、纳米复合薄膜、多层膜结构等对VO2薄膜的性能调控与优化进行总结, 最后对未来等离子体增强化学气相沉积制备VO2薄膜的研究前景做出展望。
新一代高超声速飞行器热端部件服役温度不断提高, 对表面防护涂层的相稳定性和抗烧蚀性能提出了更高的要求。本工作针对传统过渡金属氧化物ZrO2、HfO2涂层开展高熵化设计, 采用高温固相反应结合超音速大气等离子喷涂制备(Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ(M1R3O)、(Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ(M2R3O)、(Hf0.25Zr0.25- Sm0.167Er0.167Y0.167)O2-δ(M3R3O)三种高熵氧化物涂层, 探究稀土组元含量对高熵氧化物涂层的相结构演变规律、相稳定性以及抗烧蚀性能的影响。M2R3O涂层和M3R3O涂层呈现优异的相稳定性和抗烧蚀性能, 涂层经热流密度为2.38~2.40 MW/m2的氧-乙炔焰烧蚀后仍保持物相结构稳定, 未发生固溶体分解或析出稀土组元。其中M2R3O涂层循环烧蚀180 s后的质量烧蚀率与线烧蚀率分别为0.01 mg/s和-1.16 μm/s, 相比M1R3O涂层(0.09 mg/s、-1.34 μm/s)以及M3R3O涂层(0.02 mg/s、-4.51 μm/s), 分别降低了88.9%、13.4%以及50.0%、74.3%, 表现出最优异的抗烧蚀性能。M2R3O涂层的抗烧蚀性能优异归因于其兼具较高的熔点(>2200 ℃)和较低的热导率((1.07±0.09) W/(m·K)), 使其有效防护内部的SiC过渡层以及C/C复合材料免受氧化损伤, 避免了界面SiO2相形成所导致的界面开裂。
由于原子间存在共价键、金属键与离子键的混合键合状态, MAX相陶瓷兼具金属和陶瓷材料的性能特点, 并且常与金属之间表现出良好的润湿性, 有助于形成强界面结合, 独特的层状原子结构使MAX相陶瓷表现出良好的断裂韧性、阻尼与自润滑性能。因此, 作为金属基复合材料的增强相, MAX相陶瓷具有显著优势, 本文着重介绍相关研究进展。目前, MAX相陶瓷增强金属基复合材料主要通过搅拌铸造、粉末冶金和熔体浸渗等途径制备, 得到的复合材料表现出优于金属基体的强度、硬度与模量, 同时还具备良好的耐磨、导电、抗电弧侵蚀等性能。此外, 借助真空抽滤、冰模板等工艺可实现超细片状MAX相陶瓷粉体的择优定向排列, 然后利用金属熔体浸渗多孔陶瓷骨架, 可获得具有类贝壳结构的MAX相陶瓷增强金属基仿生复合材料, 进一步提升材料的强韧性能。MAX相陶瓷增强金属基复合材料在承载、电接触等应用领域具有显著优势和广阔前景。
类脑神经形态计算通过电子或光子器件集成来模拟人脑结构和功能。人工突触是类脑系统中数量最多的计算单元。忆阻器可模拟突触功能, 并具有优异的尺寸缩放性和低能耗, 是实现人工突触的理想元器件。利用欧姆定律和基尔霍夫定律, 忆阻器交叉阵列可执行并行的原位乘累加运算, 从而大幅提升类脑系统处理模拟信号的速度。氧化物制备容易, 和CMOS工艺兼容性强, 是使用最广泛的忆阻器材料。本文梳理了氧化物忆阻器的研究进展, 分别讨论了电控、光电混合调控和全光控忆阻器, 主要聚焦阻变机理、器件结构和性能。电控忆阻器工作一般会产生微结构变化和焦耳热, 将严重影响器件稳定性, 改进器件结构和材料成分可有效改善器件性能。利用光信号调控忆阻器电导, 不仅能降低能耗, 而且可避免产生微结构变化和焦耳热, 从而有望解决稳定性难题。此外, 光控忆阻器能直接感受光刺激, 单器件即可实现感/存/算功能, 可用于研发新型视觉传感器。因此, 全光控忆阻器的实现为忆阻器的研究和应用打开了一扇新窗口。
高速飞行技术的发展对高性能热结构材料提出了迫切需求。高熵碳化物(HECs)陶瓷作为近年来发展迅速的一类新型材料, 兼具高熵陶瓷与超高温陶瓷的优良特性, 在极端服役环境中具有广阔的应用前景, 因此得到国内外学者的广泛关注。相比仅含有一种或两种过渡金属元素的传统超高温碳化物陶瓷, HECs综合性能有所提升, 且具有更强的组成和性能可设计性, 因此具备较大的发展潜力。经过对HECs的不断探索, 研究人员获得了许多有趣的结果, 开发了多种HECs的制备方法, 对HECs的显微结构和性能的认识也更加深入。本文综述了HECs的基本理论以及从实验过程中获得的规律; 对HECs粉体、HECs块体、HECs涂层及薄膜, 以及纤维增强HECs基复合材料的制备方法进行了梳理和归纳; 并对HECs的力学、热学等性能, 尤其是与高温应用相关的抗氧化、抗烧蚀性能的研究进展进行了综述和讨论。最后, 针对HECs研究中有待进一步完善的科学问题, 对HECs的未来发展提出了展望。
连续碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是下一代航空发动机的关键结构材料, 其界面性能是决定材料力学性能的重要因素之一。为此, 本研究表征了国产三代2.5D SiCf/SiC的界面性能, 并探究其与材料拉伸性能的关系。利用拉伸加/卸载过程中的迟滞特性定量分析了2.5D SiCf/SiC中各组元残余应力和界面滑动应力(IFSS), 根据断口拔出纤维的断裂镜面半径得到了纤维就位强度(${{\sigma }_{\text{fu}}}$)的统计分布, 通过纤维推入法得到界面剪切强度(ISS)和界面脱黏能(Gi)。结果表明: 利用宏观结合细观的方法能够较全面地描述SiCf/SiC从初始裂纹萌生到最终脱黏不同阶段的界面力学性能, 2.5D SiCf/SiC的IFSS、ISS和Gi分别为56 MPa、(28±5) MPa和(2.7±0.6) J/m2。ISS和Gi较低, 表明界面结合较弱, 在剪应力作用下易产生裂纹, 而IFSS较大, 表明界面脱黏后纤维与基体间相对滑动较为困难, 阻碍了纤维拔出, 不利于发挥纤维的增强作用。根据获得的界面性能和经典ACK模型, 较好地预测出比例极限应力, 并结合${{\sigma }_{\text{fu}}}$预测了2.5D SiCf/SiC的拉伸强度。拉伸强度预测值高于实验值, 这与界面处径向残余压应力以及纤维承受的残余拉应力有关。
目前, 人工智能在人类社会发挥着越来越重要的作用, 以深度学习为代表的人工智能算法对硬件算力的要求也越来越高。然而随着摩尔定律逼近极限, 传统冯·诺依曼计算架构越来越难以满足硬件算力提升的迫切需求。受人脑启发的新型神经形态计算采用数据处理与存储一体架构, 有望为开发低能耗、高算力的新型人工智能技术提供重要的硬件基础。人工神经元和人工突触作为神经形态计算系统的核心组成部分, 是当前研究的前沿和热点。本文聚焦氧化物人工神经元, 从神经元数学模型出发, 重点介绍了基于氧化物电子器件的霍奇金-赫胥黎神经元、泄漏-累积-发射神经元和振荡神经元的最新研究进展, 系统分析了器件结构、工作机制对神经元功能模拟的影响规律。进一步, 根据不同尖峰发射动态行为, 阐述了基于氧化物神经元硬件的脉冲神经网络和振荡神经网络的研究进展。最后, 讨论了氧化物神经元在器件、阵列、神经网络等层面面临的挑战, 并展望了其在神经形态计算等领域的发展前景。
透明陶瓷兼具高强度、高硬度和优异的光学性能, 在轻量化透明装甲领域具有重要的应用前景。制备大尺寸和高光学质量透明陶瓷部件是实现其应用的主要挑战。本工作采用国产商业Al2O3和Y2O3为起始原料, 通过真空反应烧结工艺制备钇铝石榴石(Y3Al5O12, 简称YAG)透明陶瓷, 突破了大尺寸素坯干压成型与脱黏、真空烧结及光学性能提升等关键技术, 成功研制了低变形量、高光学质量的YAG透明陶瓷, 并通过成型和烧结设备的升级改造, YAG透明陶瓷的最大可制备尺寸达到1040 mm×810 mm×15 mm, 为后期应用奠定了坚实基础。
为了获得满意的临床疗效, 优质医用生物陶瓷应该具备怎样的性能一直困扰着广大研究者。自20世纪90年代以来, 作者团队致力于研发医用生物陶瓷, 从基础科学研究到成果转化, 再到临床应用, 积累了丰富的研究和应用经验, 相继提出了“生物适配”和“精准生物适配”理论。本文围绕“医用生物陶瓷(磷酸钙类材料)的功能性生物适配”这一主题分享本团队的学术研究成果和临床应用经验,从结构适配、降解适配、力学适配、应用适配等四个角度, 结合骨科临床应用背景, 探讨如何实现其生物适配和设计制造的有效衔接,旨在为医用生物陶瓷的设计、制造、监管和应用提供依据和建议。
基于功能油墨的先进印刷技术(打印、涂布), 能够突破传统制造手段的瓶颈, 实现具有复杂结构和特定功能的个性化薄膜及电子器件的快速成型, 在可穿戴智能识别、能源存储、电磁屏蔽及吸波、触摸显示等领域展现出巨大的应用前景。印刷先进能源及电子器件的关键在于, 开发先进功能油墨材料和与之相匹配的先进印刷技术。2011年发现的MXene材料, 是一类由过渡金属碳化物、氮化物或碳氮化物所组成的二维大家族的总称, 因其卓越的物理和化学性质(如高电导率、出色的亲水性和丰富的表面化学)而受到广泛关注, 特别适合作为印刷电子器件的油墨材料。探索MXene油墨的印刷行为特征并厘清MXene油墨在印刷关键环节中的机理, 不仅有助于获得高精度的MXene油墨印刷图案, 而且可以为印刷多尺度、多材料的多功能薄膜和电子器件打下了坚实基础。本文首先介绍了MXene的制备及其片层胶体的化学稳定性, 并对其流变学特性、可打印油墨的形成、油墨印刷行为以及与之适配的打印方法进行了讨论, 着眼于MXene油墨在能源、健康监测和传感应用方面的最新进展, 分析了该领域面临的挑战和未来的发展方向, 为该领域的研究者提供新的视角和启示。
“乱花渐欲迷人眼, 浅草才能没马蹄”, MXene材料自2011年被报道之后, 逐步受到材料科学家的青睐, 近年来在储能、催化、环境、吸波、生物治疗和高性能复合材料等领域都涌现出一系列重要突破, 令人目不暇接。为了及时跟踪该新兴二维无机材料的研究进展, 《无机材料学报》编辑部组织了本期特邀专题评述。虽然已有一些有关MXene的优秀综述文章, 但针对性更强的专题评述类文章还比较少。为此, 我们特意邀请了活跃在MXene研究前沿并取得重要进展的专家, 请他们讲述MXene研究的心得体会, 并指出存在的问题和挑战。
合成是MXene研究的基础, 也是决定其最终物理化学性质的根本。所有的MXene材料研究都涉及到如何得到这种新型二维材料, 目前几乎90%以上的研究都会采用含氟刻蚀剂的化学方法将MAX相转变为MXene。该方法简单易行, 特别适合在常规化学实验室中操作。路易斯酸熔盐刻蚀的方法是近年来发展出来的非溶剂化学刻蚀方法, 非常适用于调控MXene表面端基。“化学剪刀”结构编辑策略提出后进一步丰富了MXene材料表面化学和晶体结构, 为定制化合成该二维无机材料提供了全新思路。MAX相作为传统的结构与功能一体化材料, 在高温应用方面的潜力巨大, 但是其层状结构的增韧特性并没有得到很好的诠释。刘增乾团队通过巧妙的实验设计得到具有类贝壳微观结构的MAX相/镁合金复合材料, 大幅度提高了材料的强度和韧性, 但调控界面润湿和结合强度仍是未来研究的重点。程群峰团队近期在高性能MXene纳米复合材料研发上取得了突破性进展, 提出界面协同概念提高复合材料的致密度, 并认为未来应该更加关注大面积、高效率、规模化的MXene复合材料制造技术。阿卜杜拉国王科技大学Alshareef团队撰文论述了MXene电子学应用研究, 并特别指出MXene诸多关键物理化学性质(如亲水性、功函数可调、表面端基可控、导电、特征离子激元和电磁相互作用等)对于未来电子器件研究的重要意义。沈国震团队也介绍了MXene材料在柔性光电探测器中的研究现状, 特别指出半导体型MXene是最终实现器件应用的关键。汪德高团队回顾了MXene作为添加剂对于新型薄膜太阳能电池的作用, 二维MXene可以在界面处调控能带、光吸收效率和电传输等, 对发展高光电转化效率光电器件有积极的作用。张传芳团队则介绍了面向电子器件和能源应用的MXene油墨印刷技术, 其中特别强调MXene材料的环境稳定性和封装技术是需要关注的难题之一。MXene具有类金属导电性和手风琴状结构, 因此在应力调控下具有电阻变化的响应特性。高义华团队详细介绍了MXene压力传感器的研究进展, 同时也提及了几种新型传感机制, 如电容式传感、摩擦电式传感、压电式传感、电池式传感和纳米流体传感等, 在未来的“电子皮肤”应用领域很有发展前景。MXene材料与电磁波之间的相互作用引起了广泛研究兴趣, 如电磁屏蔽相关研究等。于石墨烯材料相比, MXene固有的亲水性使得终端应用(如涂层和聚合物复合材料)更加方便, 韩美康团队最新工作显示MXene在红外波段具有结构可控的辐射特性, 尤其是改变晶格元素、端基组成和层间距可显著影响红外响应, 有望发展成全新的红外波段物理器件。肖旭团队最新工作发现MXene在全太赫兹波段能够实现理论极限50%的吸收率, 并指出高载流子浓度和超快弛豫时间是其在太赫兹宽频均一响应的关键因素。未来太赫兹技术在探测、成像、通信等领域会发挥越来越重要的作用, 因此MXene材料也将受到越来越多的关注。MXene在储能领域的研究一直以来都是热点, 支春义团队阐述了用于锌离子电池的MXene阴极、阳极和电解质/隔膜的最新进展, 讨论了离子插层调控、表面接枝修饰、杂原子掺杂、层间距控制等手段的作用。这些研究思路对于其它离子电池研发都具有很好的借鉴意义。
《无机材料学报》编辑部向所有受邀专家们表达最诚挚的谢意, 相信这些文章中的真知灼见能够对MXene研究起到积极的促进作用, 也会对孜孜以求的研究生们提供有益的帮助;同时还要感谢诸位无私的审稿专家, 他们的专业意见和建议为这一期的评述文章增色不少。
“两岸猿声啼不住, 轻舟已过万重山”。就在这一期特邀专题评述的出版过程中, 科学界又不断涌现出更多更新的MXene科研成果, 不少是围绕本专辑提及的难点和挑战提出了新的见解, 并逐步深入到基础的合成化学机制和新奇的物理行为研究。我们期待在各界同仁的共同努力下, MXene材料能为材料科学界带来更多惊喜。
本研究采用水热-磷化-电化学沉积法在磷化钴表面构筑了金属氢氧化物层, 制备了NiFeOH/CoP/NF复合电极, 考察了复合电极电解水制氢的性能。在1.0 molּ/L的KOH介质中, NiFeOH/CoP/NF复合电极表现出良好的催化电解水性能。在电流密度为100 mA/cm2时, NiFeOH/CoP/NF复合电极电催化析氢(HER)和析氧反应(OER)所需的过电势分别为141和372 mV。在电流密度为10 mA/cm2时, NiFeOH/CoP/NF同时用作阴极和阳极电解水所需电压仅为1.61 V。NiFeOH保护层增强了CoP在电解水反应中的活性和稳定性, NiFeOH/CoP/NF复合电极在恒电流电解中表现出高的HER和OER稳定性, 活性可维持60000 s, 性能未见明显衰减。将NiFeOH/CoP/NF两电极电解池与GaAs太阳能电池组成光伏-电解水系统, 该系统在100 mW/cm2模拟光照条件下, 太阳能至氢能转化效率达到18.0%, 并可稳定运行200 h。
异质外延为金刚石晶圆合成提供了一个有效的实现路径, 而Ir衬底上金刚石形核生长技术经过20多年的发展已经有能力制备最大直径为3.5英寸的晶体, 开启了金刚石作为终极半导体在电子信息产业应用的大门。然而,表面形核、偏压技术窗口、金刚石外延生长等一系列发生在异质衬底上的问题都需要从生长热力学的角度给予解释。本研究针对化学气相沉积气氛中金刚石如何实现外延形核与生长这一关键问题, 利用第一性原理计算从原子尺度对金刚石形核生长过程展开了系列探究。研究结果如下: C原子在Ir衬底表面位点吸附比在体相位点吸附更稳定, 表明无偏压条件下金刚石形核只能在衬底表面发生; 离子轰击作用下非晶氢化碳层中sp3杂化C原子个数随着离子动能的增加呈现先增大后减小的变化规律, 证实了金刚石高密度形核存在一定的离子动能与偏压大小窗口; 金刚石沿着Ir衬底外延生长时界面结合能最低(约为-0.58 eV/C), 意味着界面结合能是决定外延形核生长的主要热力学因素。本研究阐明了偏压辅助离子轰击促进金刚石单晶外延生长的热力学机制, 对于指导金刚石及其他碳基半导体生长具有重要意义。
具备良好成骨性能和降解速率的生物陶瓷骨组织工程支架在骨修复领域极具应用潜力。镁黄长石(Ca2MgSi2O7)因其具有良好的力学性能、生物降解能力以及促成骨性能而备受关注。本研究以硅树脂为聚合物前驱体、碳酸钙与氧化镁为活性填料制备打印浆料, 采用挤出式3D打印技术在室温条件下制备支架素坯, 并在惰性气氛下高温烧结制备了镁黄长石生物陶瓷支架, 并对比研究了镁黄长石支架与斜硅钙石(Ca2SiO4)、镁橄榄石(Mg2SiO4)支架在结构、抗压强度、体外降解能力以及体外生物学性能等方面的差异。结果表明: 镁黄长石支架与斜硅钙石、镁橄榄石支架具有相似的三维多孔结构, 抗压强度、降解速率介于镁橄榄石和斜硅钙石之间, 但促进骨髓间充质干细胞的成骨基因表达能力显著强于镁橄榄石和斜硅钙石支架。本研究证实采用3D打印制备的镁黄长石支架有望作为骨组织工程较理想的支架。
熔盐电解是核能领域乏燃料干法后处理的关键技术。高温下熔盐会对盛装乏燃料的坩埚造成严重的腐蚀, 因此, 研发具有耐高温和抗腐蚀的坩埚材料是发展干法后处理技术的关键。Si3N4凭借其优异的高温热学和力学性能, 成为干法后处理工艺中坩埚的理想候选材料。然而在实际服役条件下, Si3N4面临高温熔盐和水氧的侵蚀, 其失效行为尚不明确。因此, 本工作选取Si3N4为研究对象, 在氩气和水氧(5%H2O-10%O2-85%Ar)环境中, 开展了LiCl-KCl和NaCl-2CsCl熔盐对Si3N4的腐蚀行为研究。研究发现, 在氩气环境中, Si3N4在LiCl-KCl熔盐中出现轻微的晶界腐蚀, 而NaCl-2CsCl熔盐对其腐蚀并不明显。在5%H2O-10%O2-85%Ar水氧耦合环境中, LiCl-KCl熔盐优先腐蚀Si3N4中的晶界相, 而NaCl-2CsCl熔盐的腐蚀比氩气环境更为严重。高温水氧环境显著加剧了熔盐对Si3N4陶瓷的腐蚀程度, 同时晶界相成为Si3N4最易受到腐蚀的部位。此外, LiCl-KCl和NaCl-2CsCl熔盐在Si3N4表面的润湿性与抗腐蚀性之间并无直接关联。上述研究结果揭示了Si3N4在高温熔盐-水氧环境下的腐蚀机制, 为乏燃料干法后处理工艺中关键材料的选择提供了参考。
有机-无机杂化钙钛矿太阳能电池具有制备成本低、光电转换效率(Photoelectric Conversion Efficiency, PCE)高的巨大优势, 显示出广阔的商业化前景。经过十几年的深入研究, 钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的实验室器件(<1 cm2)、大面积器件(1~10 cm2)、迷你模组级器件(10~800 cm2)和模组级器件(>800 cm2)的最高认证PCE已分别提升至26.10%、24.35%、22.40%和18.60%。随着PSCs面积扩大, PCE急剧下降, 这主要是因为制备方法的局限性,难以获得高质量的大面积钙钛矿薄膜。实验室器件常采用的旋涂法难以应用到实际生产中, 目前大面积钙钛矿薄膜的制备方法主要有刮涂法和狭缝涂布法, 但其存在薄膜成核结晶过程难以精确控制等问题。本文从大面积有机-无机杂化钙钛矿薄膜的制备方法入手, 介绍了大面积钙钛矿层成膜机制及薄膜质量提升策略。最后, 对未来高PCE、高稳定性的大面积PSCs的制备技术和应用进行了展望, 旨在对高性能的大面积PSCs研究提供有益参考。
BiFeO3是一种非常有前途的无铅铁电材料, 与大多数传统铁电材料相比, 它具有更大的极化和更高的居里温度, 为高温应用提供了可能。受到衬底强烈的夹持效应、较大的矫顽场和漏电流的影响, BiFeO3薄膜难以被极化。自极化是解决这一问题的可行方法。本研究采用溶胶-凝胶法在Pt(111)/Ti/SiO2/Si衬底上生长了BiFeO3薄膜, 向上梯度薄膜(从衬底BiFeO3过渡到薄膜表面Bi0.80Ca0.20FeO2.90)以及向下梯度薄膜(从衬底Bi0.80Ca0.20FeO2.90过渡到薄膜表面BiFeO3)。通过细致地调控薄膜内部缺陷的定向分布形成内置电场,从而导致薄膜具有自极化特性。压电力显微镜结果表明:在BiFeO3薄膜中, Ca的梯度方向可以调控自极化的方向。此外, 类似二极管的单向导通特性验证了薄膜的自极化是由Ca的浓度梯度掺杂导致。X射线光电子能谱结果表明, 氧空位的梯度分布导致的内置电场可能是造成自极化现象的原因。本研究为实现铁电薄膜的自极化提供了一种新的策略, 并在以自极化的内置电场为驱动, 提高光伏或光敏器件性能方面具有潜在的应用前景。
纳米TiO2具有高催化活性、高化学稳定性、成本低廉和安全无毒等优势, 是目前广泛使用的一类光催化剂, 但较大的禁带宽度和较高的光生电子-空穴复合速率使其光子利用率偏低。本研究利用微刻蚀法设计合成了二维TiO2纳米片, 并进一步与Ru复合, 构建了三明治结构Ru@TiO2高效光催化剂。采用不同表征手段研究了三明治结构Ru@TiO2的表面形貌、电子结构、光电特性和光降解盐酸四环素的性能。结果表明: 插入Ru将TiO2的光响应范围由紫外光区拓展至整个可见-近红外光区, 光子吸收和载流子分离效率得以提升,同时提高了体系光催化活性。模拟太阳光(AM 1.5G, 100 mW·cm-2)照射80 min, 三明治结构Ru@TiO2高效光催化剂对盐酸四环素的降解效果出色, 降解效率达到91.91%。本研究为TiO2基高效光催化剂结构设计提供了一条有效途径。
可充电锌离子电池(ZIBs)以其低成本、固有安全性、高比能量和环保特性而在大规模储能领域中引起了极大的关注。尽管对ZIBs的正极、负极以及电解质的研究不断取得突破, ZIBs的实际性能仍难以达到实用化的要求, 关键在于缺少先进材料的开发。MXene作为一种新型的二维材料, 具有各种优异的特性包括丰富的原料、可定制的结构和独特的理化特性。二维(2D)MXene在ZIBs中的应用已经取得了重大进展。本文简要总结了用于ZIBs的MXene的多种合成路线、MXene的环境稳定性、形态和结构特征以及化学性质的进展; 详细阐述了MXene基阴极、阳极和电解质/隔膜的最新发展, 丰富的成果表明MXene材料具有实现高性能ZIBs的巨大潜力; 归纳探讨了增强基于MXene的 ZIBs性能的策略, 包括离子插层调控、表面接枝修饰、杂原子掺杂、层间距拓宽等; 最后, 提出了基于MXene的ZIBs面临的挑战, 展望了未来前景, 旨在为开发实用化MXene基储能器件指明方向。
近年来, 压力传感器在智能可穿戴纺织品、健康监测、电子皮肤等领域得到了广泛应用。二维纳米材料MXene的出现, 为压力传感带来了全新的突破。Ti3C2Tx是压力传感领域研究最多的MXene, 具有良好的机械性能、高导电性、优异的亲水性以及广泛的可修饰性, 是理想的压力传感材料。因此, 近些年研究者们对MXene在压力传感器中的设计和应用进行了大量探索和研究。本文总结了MXene的制备技术和抗氧化方法。同时介绍了基于MXene的微结构设计, 包括气凝胶/多孔结构材料、水凝胶、柔性衬底和薄膜。该类设计有利于提高压力传感器的响应范围、灵敏度和柔韧性, 促进了压力传感器的快速发展。此外, 进一步探讨了MXene压力传感器的工作机制, 包括压阻式、电容式、压电式、摩擦电式、电池式和纳米流体式等。MXene以其优异的特性而在各种机制的传感器中得到了广泛应用。最后, 对MXene材料的合成、性质以及其在压力传感方面的机遇和挑战进行了展望。
迟滞效应是影响钙钛矿太阳能电池性能和稳定性的重要问题, 离子迁移和由此产生的界面离子积累是引起迟滞效应最重要的原因之一。本研究采用上转换发光纳米材料(Upconversion Luminescent Nanoparticles, UCNP)修饰电子传输层/钙钛矿活性层的界面及本征钙钛矿活性层, 系统探究了UCNP对钙钛矿的形貌、结构、光谱/光电性能和离子迁移动力学的影响。结果表明: 钙钛矿活性层经过UCNP修饰后器件的光电转换效率(Power Conversion Efficiency, PCE)最佳(16.27%), 而且迟滞因子(Hysteresis Factor, HF)得到显著改善(0.05)。进一步采用回路切换瞬态光电技术系统探究了钙钛矿太阳能电池不受光生载流子干扰的离子迁移动力学过程, 证明UCNP在光电转换过程中起到抑制离子累积和迁移的双重作用: 一方面UCNP可以形成阻隔层, 阻碍离子累积; 另一方面, UCNP可以在退火过程中进入到钙钛矿体相晶界处, 阻碍离子迁移, 使恢复电压从0.43 V降低到0.28 V。极化诱导缺陷态模型解释了离子-载流子相互作用机制, 阐释了UCNP抑制钙钛矿光伏器件迟滞效应的机理。本研究可以为调控钙钛矿太阳能电池迟滞提供一种有效的解决方案。
骨科钛内置物存在感染的风险, 需要开发具有抗菌性、生物相容性且不易产生耐药性的表面涂层。通过电泳沉积15、30、45、60 s在微弧氧化(MAO)的钛表面制备了4组纳米氧化镁(MgO)涂层。MgO颗粒在MAO表面形成均匀涂层, 覆盖率随电泳时间延长。与金黄色葡萄球菌共培养6 h后, 4组样品抗菌率分别为1%、69%、83%、84%; 共培养24 h后抗菌率分别为81%、86%、89%、98%。显微观察发现MgO沉积样品表面黏附细菌密度、活细菌比例均随沉积时间延长而减少。与小鼠成骨细胞共培养1 d后, 4组样品存活率(相对空白孔板中所接种细胞)分别为108%、89%、53%、27%, 5 d后分别为139%、117%、112%、66%。荧光显微观察发现MAO样品表面未见死细胞, 而MgO沉积样品表面死细胞比例随沉积时间延长而增加, 但在实验周期(5 d)内均<5%。本研究表明电泳沉积30 s制备的MgO涂层具有良好的体外抗菌性和生物相容性。
功率半导体器件高电压、大电流、高功率密度的发展趋势, 对器件中陶瓷基板的散热能力和可靠性提出了更高的要求, 兼具高热导率和优异力学性能的氮化硅陶瓷作为功率半导体器件的首选散热基板材料受到了广泛关注。目前氮化硅陶瓷热导率的实验值与理论值存在较大差距, 高温、长时间保温的制备条件不仅会使晶粒过分长大,削弱其力学性能, 而且会造成成本高企, 限制了其规模化应用。晶格氧缺陷是影响氮化硅陶瓷热导率的主要因素, 通过筛选非氧化物烧结助剂降低体系中的氧含量, 调节液相的组成和性质并构建“富氮-缺氧”的液相, 调控液相中的溶解析出过程, 促进氮化硅陶瓷晶格氧的移除及双峰形貌的充分发育, 从而实现氮化硅陶瓷热导率-力学性能的协同优化是目前研究的热点。本文基于元素分类综述了当前国内外开发的非氧化物烧结助剂体系, 着重从液相调节和微观形貌调控的角度介绍了非氧化物烧结助剂改善氮化硅陶瓷热导率的作用机理, 分析了晶粒发育、形貌演变规律和晶格氧移除机制, 并展望了高导热氮化硅陶瓷的未来发展前景。
为拓展铁尾矿的资源化利用途径, 本研究分别以细颗粒高硅铁尾矿、铁尾矿+石墨粉以及铁尾矿+石墨粉+碳化硅粉为原料, 采用泡沫注凝成形-常压烧结、泡沫注凝成形-反应烧结和模压成形-反应烧结工艺制备了铁尾矿多孔陶瓷和三种以碳化硅为主晶相的多孔陶瓷。通过DSC-TG和XRD分析, 研究了铁尾矿自身的烧结过程以及铁尾矿与石墨之间的碳热还原反应烧结过程, 对比分析了四种多孔陶瓷材料的孔隙率、压缩强度、热导率等性能。结果表明, 以铁尾矿为原料可制备具有较高孔隙率(87.2%)、压缩强度(1.37 MPa)和低热导率(0.036 W/(m·K))的铁尾矿多孔陶瓷, 它是一种高效保温隔热材料; 利用铁尾矿与石墨之间的碳热还原反应可获得碳化硅多孔陶瓷, 其热导率显著提高, 但强度偏低; 而在原料中加入部分碳化硅, 可以明显改善多孔陶瓷的压缩强度, 获得具有高孔隙率(91.6%)、较高压缩强度(1.19 MPa)和热导率(0.31 W/(m·K))的碳化硅多孔陶瓷, 它可作为轻质导热材料或复合相变材料的载体使用; 与泡沫注凝成形工艺相比, 采用模压成形工艺制备的碳化硅多孔陶瓷虽然孔隙率有所降低(79.3%), 但热导率得到显著提升(1.15 W/(m·K)), 同时原料和生产成本大幅降低, 有利于实现产品的工业化生产。
碳化硅陶瓷是一种重要工程材料, 但具有一定的脆性, 这限制了其进一步应用。二维石墨烯具有诸多优良特性, 可以作为第二相对碳化硅陶瓷材料进行性能改善。然而石墨烯在陶瓷基体中存在分散性较差等问题, 难以发挥其对陶瓷基体的改性作用。为解决以上问题, 本工作以陶瓷有机前驱体聚碳硅烷和工业可膨胀石墨为原料, 通过前驱体-纳米插层技术制备了少层石墨烯纳米片(GNPs)的体积分数分别为1%、3%和5%的SiC/GNPs陶瓷基复合材料。GNPs在SiC陶瓷基体中呈阵列态平行排布, 显示出极高的取向性; 随着GNPs含量增加, 阵列中GNPs的间距依次递减, 表现出一定的微观组织拓扑可调节性; 加入GNPs显著提高了SiC陶瓷的断裂韧性, 当GNPs含量为3%时, 样品的相对密度为98.5%, 抗弯强度为445 MPa, 断裂韧性达到最高值5.67 MPa·m1/2, 相比纯SiC陶瓷提高了40%, 由GNPs引发的裂纹偏转与桥连是主要的增韧机制。而进一步提高GNPs含量, 断裂韧性下降至4.37 MPa·m1/2。这种含有石墨烯阵列的复合材料可以用于新型“结构-功能一体化”SiC基陶瓷器件的设计与开发。
制备高效稳定的光催化剂对于光催化技术的发展至关重要。本研究采用超声辅助沉积加低温煅烧的方法制备了2H相MoS2/g-C3N4 S型异质结光催化剂(MGCD), 并综合考察了材料的相结构、微观形貌、光吸收性能、X射线光电子能谱、电化学交流阻抗和光电流等对光催化性能的影响。结果表明: 经过超声辅助沉积-煅烧处理, MoS2微米球发生破碎分散结合在g-C3N4纳米片层表面上并形成异质结。可见光下5%MGCD(添加5% MoS2)对罗丹明B(RhB)在20 min时的降解率达到了99%, 且样品重复使用5次后对RhB的降解率仍能达到95.2%, 表现出良好的光催化性能及稳定性。从内建电场形成的角度进一步分析表明, 异质结中MoS2与g-C3N4间耦合形成的内建电场引起的能带弯曲可以有效引导载流子的定向迁移, 并促进光生载流子的分离, 从而提高了光催化反应效率。异质结光催化剂的自由基捕获实验表明: O2-和·OH在催化降解RhB中是主要的活性物种, h+的贡献次之。
化学动力学疗法(CDT)利用肿瘤细胞内源性H2O2与芬顿催化剂反应生成高毒性的羟基自由基(•OH), 从而杀死肿瘤细胞, 但内源性H2O2不足和纳米粒子转运效率较低导致抗癌效果不理想。本研究制备了一种分散性良好、尺寸较小的铜掺杂介孔二氧化硅(Cu-MSN), 负载化疗药物阿霉素(DOX)和抗坏血酸盐(AA)后, 表面经叶酸(FA)和二甲基马来酸酐(DMMA)改性的壳聚糖(FA-CS-DMMA)以及羧甲基壳聚糖(CMC)包裹, 得到pH响应型靶向纳米催化剂FA-CS-DMMA/CMC@Cu-MSN@DOX/AA(缩写为FCDC@Cu-MSN@DA)。扫描电镜显示纳米粒子FCDC@Cu-MSN@DA粒径约为100 nm。体外48 h内Cu2+释放量可达80%, 药物DOX释放达到57.3%。释放的AA经自氧化后产生H2O2, 诱导Cu2+发生类芬顿反应, 从而增强CDT。细胞实验证明, FCDC@Cu-MSN@DA联合化疗药物表现出优异的抗肿瘤活性, 说明该多功能纳米催化剂在癌症治疗中具有潜在应用前景。
作为ⅣA族碲化物, SnTe具有与PbTe相同的晶体结构和相似的双价带结构, 是一种非常有前途的热电材料, 但高温软化和低温热电性能差等问题阻碍了其进一步推广应用。因此, 提升SnTe的平均热电优值, 拓宽服役区间, 有重要的研究意义。能带工程和晶格工程可同时优化功率因子和晶格热导率, 提升SnTe的热电性能。本研究采用MgSe合金化策略, 通过熔炼和放电等离子烧结(SPS)的方法制备了一系列Sn1-yPbyTe-x%MgSe(0.01≤y≤0.05, 0≤x≤6)样品。研究发现, 合金化MgSe可增大能带带隙, 有效抑制本征SnTe在高温段的双极扩散, 使高温Seebeck系数得到提升, 同时声子散射降低了体系晶格热导率, 使高温热电性能(873 K)提升了100%; 掺杂Pb元素可有效调制载流子浓度抑制电子热导率, 从而提升SnTe平均热电性能。其中, Sn0.96Pb0.04Te-4%MgSe样品在873 K的ZT为1.5, 423~873 K的平均ZT达到0.8, 得到了比文献更优异的结果。
鉴于平板式固体氧化物燃料电池(SOFC)电堆对低面电阻、高稳定性阴极接触材料的需求, 本研究阐明了LaNi0.6Fe0.4O3(LNF)颗粒尺寸调控对导电和SOFC单电池性能演变的影响机制, 优化了LNF预处理工艺, 降低了接触组件面电阻,提升了SOFC单电池性能及热循环稳定性。结果表明:预压造粒的样品(LNF-2)与高温烧结预处理的样品(LNF-3)的面电阻更小, 分别为0.074和0.076 Ω·cm²; 在750 ℃施加1 A/cm2电流负载后, 能够更快地进入稳态, 并保持颗粒尺寸稳定。其中, LNF-2单电池在750 ℃下的峰值功率密度0.94 W/cm2较未处理的LNF的 0.66 W/cm2高, 但在热循环过程中性能衰减较大,下降了20%; 而LNF-3单电池在20次热循环后峰值功率密度仅下降了4%。本研究对高可靠SOFC电堆装配及其长寿命稳定运行具有指导及参考价值。
连续SiC纤维增强SiC(SiCf/SiC)复合材料具有高比强度、高比模量、耐高温、耐辐照等优点, 在先进航空发动机热端部件和核反应堆包壳等领域具有广阔的应用前景。SiCf/SiC复合材料具有纤维、界面、基体等复杂的多尺度结构, 其服役环境苛刻、损伤失效过程复杂, 深刻理解与准确分析其在近服役环境下损伤失效模式对于材料和构件的可靠服役具有重要意义。传统的“事后分析”方法无法获取材料在复杂服役环境下的损伤失效过程数据, 因此迫切需要发展面向高温服役环境的复合材料原位表征测试技术。本文介绍了基于扫描电子显微镜、数字图像相关、显微计算机断层扫描、声发射、电阻等原位监测方法的基本原理、优势与局限性, 重点讨论了以上各种原位监测方法及多种原位监测方法联用在SiCf/SiC复合材料高温环境力学表征中的最新研究进展。最后, 总结了SiCf/SiC复合材料高温环境原位监测技术存在的挑战, 并对多种原位技术联用、太赫兹辐射等新型检测技术、复杂构件的损伤原位监测方法等未来发展方向进行了初步展望。
氧化物陶瓷具有高硬度、高强度以及优异的抗氧化和抗腐蚀性能, 是高性能发动机极端高温、燃气腐蚀、氧化服役环境用重要的候选高温结构材料, 在航空航天用高端装备领域具有广阔的应用前景。与传统陶瓷制备技术相比, 激光增材制造技术能够一步实现从原材料粉末到高性能结构件的一体化高致密成型, 具有柔性度好、成型效率高的特点, 可以快速制备高性能、高精度、大尺寸复杂结构部件。近年来, 基于液固相变发展的熔体生长氧化物陶瓷激光增材制造技术已成为高温结构材料制备技术领域的前沿研究热点之一。本文首先概述了激光增材制造技术的基本原理, 着重介绍了选区激光熔化与激光定向能量沉积两种典型激光增材制造技术的工艺特点。在此基础上, 重点阐述了利用激光增材制造技术制备不同氧化物陶瓷的组织特征及工艺参数对微观组织的影响规律, 并总结比较了不同体系氧化物陶瓷力学性能的差异。最后, 对该领域存在的问题进行了梳理和分析, 并对未来的发展趋势进行了展望。