无机材料学报 ›› 2025, Vol. 40 ›› Issue (1): 1-16.DOI: 10.15541/jim20240317 CSTR: 32189.14.10.15541/jim20240317

• 综述 •    下一篇

热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展

周帆(), 田志林(), 李斌()   

  1. 中山大学深圳校区 材料学院, 深圳 518107
  • 收稿日期:2024-07-03 修回日期:2024-09-23 出版日期:2025-01-20 网络出版日期:2024-09-27
  • 通讯作者: 田志林, 副教授. E-mail: tianzhlin@mail.sysu.edu.cn;
    李斌, 教授. E-mail: libin75@mail.sysu.edu.cn
  • 作者简介:周帆(1991-), 男, 博士研究生. E-mail: zhouf88@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(52202078);国家高层次人才计划科技创新领军人才项目(2022WRLJ003);广东省基础与应用基础研究基金杰出青年项目(2021B1515020083);广东省基础与应用基础研究基金(2021A1515110293);广东省基础与应用基础研究基金(2022A1515012201)

Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System

ZHOU Fan(), TIAN Zhilin(), LI Bin()   

  1. School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
  • Received:2024-07-03 Revised:2024-09-23 Published:2025-01-20 Online:2024-09-27
  • Contact: TIAN Zhilin, associate professor. E-mail: tianzhlin@mail.sysu.edu.cn;
    LI Bin, professor. E-mail: libin75@mail.sysu.edu.cn
  • About author:ZHOU Fan (1991-), male, PhD candidate. E-mail: zhouf88@mail2.sysu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52202078);Leading Talent Project of National Special Support Program(2022WRLJ003);Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholars(2021B1515020083);Guangdong Basic and Applied Basic Research Foundation(2021A1515110293);Guangdong Basic and Applied Basic Research Foundation(2022A1515012201)

摘要:

碳化物超高温陶瓷具有高熔点(>3000 ℃)、高硬度、低热导率、优异的耐高温性和良好的化学稳定性等优点, 是高超声速飞行器热防护系统的理想涂层材料。本文概述了碳化物超高温陶瓷(TiC、ZrC、HfC、NbC、TaC)的结构与性质, 总结了化学气相沉积法、等离子喷涂法和固相反应法制备碳化物超高温陶瓷涂层的研究进展, 分析了涂层微观结构、组分、结构设计以及热流密度对烧蚀行为的影响。研究表明, 添加第二相形成多元复合涂层和采用多层结构设计, 可以有效提升碳化物超高温陶瓷涂层的抗烧蚀性能。添加第二相形成复杂氧化物, 可使烧蚀后的氧化层适度烧结, 从而获得良好的结构完整性和阻氧性能。采用梯度分层和多层功能结构设计, 有效缓解了涂层热应力, 抑制了裂纹扩展, 并促进了不同层间的协同增强作用。最后, 结合研究现状, 对碳化物超高温陶瓷抗烧蚀涂层发展面临的挑战与机遇进行了展望。

关键词: 高超声速飞行器, 热防护系统, 热结构, 碳化物超高温陶瓷, 抗烧蚀涂层, 综述

Abstract:

Carbide ultra-high temperature ceramics (UHTCs) have emerged as ideal coating materials for the thermal protection systems of hypersonic vehicles due to their high melting point (>3000 ℃), high hardness, low thermal conductivity, excellent heat resistance, and good chemical stability. This review provides a comprehensive overview of structure and properties of carbide UHTCs, namely TiC, ZrC, HfC, NbC, and TaC. Furthermore, it summarizes recent developments in preparation of carbide UHTC coatings using various methods, including chemical vapor deposition, plasma spraying, and solid-phase reaction. Effects of coating microstructure, composition, structural design, and heat flux on the ablation behavior are analyzed. Data from recent literature corroborate that the added second phase can facilitate formation of complex oxides, generate an oxidation layer during ablation to undergo moderate sintering, protect structural integrity, and enhance oxygen barrier properties. Multi-layer structural designs utilize gradient layering and multi-functional structures, which effectively alleviate thermal stress within the coating, suppress crack propagation, and facilitate synergistic enhancing effects among different layers. Finally, the challenges and opportunities in development of carbide UHTC anti-ablation coatings are prospected.

Key words: hypersonic vehicle, thermal protection system, thermal structure, carbide ultra-high temperature ceramic, anti-ablation coating, review

中图分类号: