无机材料学报 ›› 2024, Vol. 39 ›› Issue (6): 726-732.DOI: 10.15541/jim20230471

• 研究论文 • 上一篇    下一篇

浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究

粟毅1(), 史扬帆1, 贾成兰1, 迟蓬涛2, 高扬2, 马青松1, 陈思安1()   

  1. 1.国防科技大学 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
    2.中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
  • 收稿日期:2023-10-13 修回日期:2023-12-05 出版日期:2024-06-20 网络出版日期:2024-03-05
  • 通讯作者: 陈思安, 副研究员. E-mail: chensian07@nudt.edu.cn
  • 作者简介:粟毅(2000-), 男, 硕士研究生. E-mail: suyi@nudt.edu.cn
  • 基金资助:
    国防科技重点实验室基金(6142907210301);国防基础科研项目(2023-JCJQ-ZD-042-00)

Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis

SU Yi1(), SHI Yangfan1, JIA Chenglan1, CHI Pengtao2, GAO Yang2, MA Qingsong1, CHEN Sian1()   

  1. 1. Science and Technology on Advanced Ceramic Fibers &Composites Laboratory, National University of Defense Technology, Changsha 410073, China
    2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2023-10-13 Revised:2023-12-05 Published:2024-06-20 Online:2024-03-05
  • Contact: CHEN Sian, associate professor. E-mail: chensian07@nudt.edu.cn
  • About author:SU Yi (2000-), male, Master candidate. E-mail: suyi@nudt.edu.cn
  • Supported by:
    National Defense Science and Technology Key Laboratory Fund(6142907210301);National Key Basic Research Program(2023-JCJQ-ZD-042-00)

摘要:

针对高速飞行器对于防热/承载一体化超高温陶瓷基复合材料的迫切需求, 以及现有反应型HfC先驱体存在的成本高、效率低和致密效果差等不足, 本研究将HfC亚微米粉体配制成稳定的陶瓷浆料, 利用浆料加压浸渍辅助先驱体浸渍裂解(PIP)工艺制备了HfC基体均匀分布的C/HfC-SiC复合材料, 探讨了HfC含量对于复合材料微观结构、力学与烧蚀性能的影响。结果表明, 当HfC实际体积分数为13.1%~20.3%时, 复合材料密度为2.20~2.58 g·cm-3, 开孔率约为5%。通过单层碳布加压浸渍陶瓷浆料, HfC颗粒能够分散到纤维束内部, 且在复合材料中分布比较均匀。提高HfC含量会降低复合材料纤维含量, 其力学性能也呈现出降低趋势。当HfC体积分数为20.3%时, 复合材料的密度、拉伸强度和断裂韧性分别为2.58 g·cm-3、147 MPa和9.3 MPa·m1/2; 经氧乙炔焰烧蚀60 s后, 复合材料的线烧蚀率和质量烧蚀率分别为0.0062 mm/s和0.005 g/s, 烧蚀过程中形成的熔融相HfxSiyOz能覆盖在材料表面, 起到良好的保护作用。

关键词: C/HfC-SiC复合材料, 浆料浸渍, 力学性能, 抗烧蚀性能

Abstract:

In response to the urgent demand for ultra-high temperature ceramic matrix composites with integrated thermal protection and load-bearing capabilities for high-speed aircrafts, this study prepared stable ceramic slurry from submicron HfC ceramic powder, and utilized the slurry pressure impregnation-assisted precursor infiltration pyrolysis (PIP) process to fabricate C/HfC-SiC composites with uniformly distributed HfC matrix to overcome the shortcomings of the existing reaction-derived HfC precursor, such as high cost, low efficiency, and poor densification effect. The influence of HfC content on the microstructure, mechanical properties, and ablation resistance of composites was investigated. Results showed that the composites had density of 2.20-2.58 g·cm-3 and open porosity of approximately 5% when the actual volume fraction of HfC was in range of 13.1%-20.3%. Utilizing a single layer of carbon cloth to impregnate the ceramic slurry with pressure, HfC particles were able to disperse into the interior of the fiber bundle and distributed relatively evenly in the composites. Increasing the HfC content resulted in reducted fiber content, and decreased mechanical properties of composites. Specifically, when HfC volume fraction was 20.3%, the composites exhibited density, tensile strength and fracture toughness of 2.58 g·cm-3, 147 MPa and 9.3 MPa·m1/2, respectively. Following 60 s of ablation under an oxygen acetylene flame, the composites demonstrated linear ablation rate of 0.0062 mm/s and mass ablation rate of 0.005 g/s. The molten phase HfxSiyOz formed during the ablation process could effectively cover the composites surface and provide protection.

Key words: C/HfC-SiC composite, slurry impregnation, mechanical property, ablation resistance

中图分类号: