无机材料学报

• • 上一篇    下一篇

浆料辅助PIP工艺制备C/HfC-SiC复合材料微观结构及性能研究

粟毅1, 史扬帆1, 贾成兰1, 迟蓬涛2, 高扬2, 马青松1, 陈思安1   

  1. 1.国防科技大学 新型陶瓷纤维及其复合材料重点实验室,长沙 410073;
    2.中国运载火箭技术研究院空间物理重点实验室, 北京 100076
  • 收稿日期:2023-10-13 修回日期:2023-12-05 出版日期:2024-03-05 网络出版日期:2024-03-05
  • 作者简介:粟毅(2000-),男,硕士研究生.E-mail:suyi(@nudt.edu.cn.
  • 基金资助:
    国家级重点实验室基金项目(6142907210301); 国防基础科研项目(2023-JCJQ-ZD-042-00)

Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Assisted Precursor Infiltration and Pyrolysis Methods

SU Yi1, SHI Yangfan1, JIA Chenglan1, CHI Pengtao2, GAO Yang2, MA Qingsong1, CHEN Sian1   

  1. 1. Science and Technology on Advanced Ceramic Fibers&Composites Laboratory, National University of Defense Technology, Changsha 410073, China;
    2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2023-10-13 Revised:2023-12-05 Published:2024-03-05 Online:2024-03-05
  • About author:SU Yi(200O-), male, Master candidate. E-mail:suyi@nudt.edu.cn
  • Supported by:
    Programs Foundation of Science and Technology on Advanced Ceramic Fibers andCompositesLaboratory (6142907210301); National Key Basic Research Program (2023-JCJQ-ZD-042-00)

摘要: 针对高速飞行器对于防热/承载一体化超高温陶瓷基复合材料的迫切需求,以及现有反应型HfC先驱体存在的成本高、效率低和致密效果差等不足,本研究将HfC亚微米陶瓷粉配制成稳定的陶瓷浆料,利用浆料加压浸渍辅助PIP工艺制备了HfC陶瓷均匀分布的C/HfC-SiC复合材料,探讨了HfC含量对于复合材料微观结构、力学与烧蚀性能的影响。结果表明,HfC体积含量13%~20%时,复合材料密度为2.20~2.58 g·cm-3,开孔率约5%。通过单层碳布加压浸渍陶瓷浆料,HfC颗粒能够分散到纤维束内部,且在复合材料中分布比较均匀。提高HfC含量会降低复合材料纤维体积含量,力学性能也呈现出降低趋势。当HfC陶瓷体积含量约为20%时,复合材料密度、拉伸强度和断裂韧性分别为2.58 g·cm-3、147 MPa和9.3 MPa·m1/2。氧乙炔焰下烧蚀60 s后,复合材料线烧蚀率和质量烧蚀率分别为0.0062 mm/s和0.005 g/s,烧蚀过程中形成的熔融相HfxSiyOz能覆盖在材料表面起到良好的保护作用。

关键词: C/HfC-SiC复合材料, 浆料浸渍, 力学性能, 抗烧蚀性能

Abstract: In response to the urgent demand for ultra-high temperature ceramic matrix composites with integrated thermal protection and load-bearing capabilities for high-speed aircraft, this study prepared stable ceramic slurry from submicron HfC ceramic powder, and utilized the slurry-assisted pressure infiltration pyrolysis process to fabricate C/HfC-SiC composites with uniformly distributed HfC matrix. Such preparation method overcame the shortcomings of the existing reaction-derived HfC precursor, such as high cost, low efficiency, and poor densification effect. The influence of HfC content on the microstructure, mechanical properties, and ablation resistance of composites was investigated. The composites had a density of 2.20~2.58 g·cm-3 and a porosity of approximately 5% when the volume fraction of HfC was between 13% and 20%. Utilizing a single layer of carbon cloth to impregnate the ceramic slurry with pressure, HfC particles were able to disperse into the interior of the fiber bundle and distributed relatively evenly in the composites. Increasing the HfC content resulted in a reduction of the fiber volume content, and decreased mechanical properties of composites. Specifically, when the content of HfC was around 20%, the composites exhibited a density, tensile strength, and fracture toughness of 2.58 g·cm-3, 147 MPa, and 9.3 MPa·m1/2, respectively. Following 60s of ablation under an oxygen acetylene flame, the composites demonstrated a linear ablation rate of 0.0062 mm/s and a mass ablation rate of 0.005 g/s. The molten phase HfxSiyOz formed during the ablation process could effectively cover the composites surface and provide protection.

Key words: C/HfC-SiC composites, slurry impregnation, mechanical property, ablation resistance

中图分类号: