无机材料学报

• • 上一篇    下一篇

增材制造柔性压电材料的现状与展望

魏相霞1, 张晓飞1, 徐凯龙2, 陈张伟3   

  1. 1.青岛大学 自动化学院未来研究院, 山东省工业控制技术重点实验室, 深圳 518060;
    2.青岛大学 材料科学与工程学院, 青岛 266071;
    3.深圳大学 增材制造研究所, 深圳 518060
  • 收稿日期:2024-01-29 修回日期:2024-02-29 出版日期:2024-03-08 网络出版日期:2024-03-08
  • 作者简介:魏相霞(1989-), 女, 助教. E-mail: xiangxia@qdu.edu.cn.
  • 基金资助:
    山东省自然科学基金(ZR2020QE040); 国家自然科学基金(51975384); 广东省特支计划人才项目(2021TQ05Z151)

Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials

WEI Xiangxia1, ZHANG Xiaofei1, XU Kailong2, CHEN Zhangwei3   

  1. 1. Shandong Key Laboratory of Industrial Control Technology, Institute for Future (IFF), School of Automation, Qingdao University, Qingdao 266071, China;
    2. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
    3. Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China;
  • Received:2024-01-29 Revised:2024-02-29 Published:2024-03-08 Online:2024-03-08
  • About author:WEI Xiangxia (1989-), female, assistant professor. E-mail: xiangxia@qdu.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province (ZR2020QE040); National Natural Science Foundation of China (51975384); Guangdong Special Support Plan Talent Project (2021TQ05Z151)

摘要: 柔性压电材料作为一类重要的功能材料, 具有韧性好、可塑性强、轻量化等优点, 可以实现机械能和电能之间的转换, 并能贴附在人体上实时获取人体或环境信息, 在运动检测、健康监测、人机交互等领域具有广阔的应用前景。为解决人们对柔性压电材料不断提高的结构要求, 增材制造技术被广泛用于压电材料的制造。该技术有望突破传统压电材料加工和生产的技术瓶颈, 极大提升柔性压电产品的结构自由度和性能, 从而为柔性压电材料的应用提供变革性推动力。本文在介绍柔性压电材料分类和性能的基础上, 系统阐述了增材制造柔性压电材料的主要工艺种类, 包括熔融沉积、墨水直写、选择性激光烧结、电辅助直写、光固化等;总结了增材制造柔性压电材料的不同结构, 主要有多层结构、多孔结构和叉指结构;介绍了增材制造柔性压电材料在能量收集、压电传感器、人机交互和生物工程中的应用进展;最后总结和展望了增材制造柔性压电材料面临的挑战以及未来发展趋势。

关键词: 柔性压电材料, 增材制造, 陶瓷, 结构, 功能应用, 综述

Abstract: As a kind of important functional materials, flexible piezoelectric materials have the advantages of good toughness, high plasticity and light-weight. The flexible piezoelectric materials can realize the effective conversion between mechanical energy and electrical energy, and it can be attached to the human body to obtain human or environment information in real time, thereby widely used in motion detection, health monitoring, and human computer interaction. With the high requirements of various there dimensional (3D) structures of flexible piezoelectric materials, additive manufacturing has been extensively utilized to fabricate different kinds of piezoelectric materials. Fortunately, this technology is expected to break the bottleneck of traditional processing of piezoelectric material by improving the structural design freedom and piezoelectric performance of flexible piezoelectric materials. Thus, the emergence of additive manufacturing printing technology provides enormous potential and opportunities for the application of flexible piezoelectric materials. Based on the introduction of the classification and performance of flexible piezoelectric materials, this paper systematically explained the main additive manufacturing technologies, including fused deposition modeling, direct ink writing, selective laser sintering, electric-assisted direct writing, stereolithography, and inkjet printing. In the following, the structural designs of flexible piezoelectric materials produced by different additive manufacturing approaches were summarized, such as multi-layer structure, porous structure, and interdigital structure. Moreover, the applications of flexible piezoelectric materials produced by additive manufacturing were systematically introduced in fields of energy harvesting, piezoelectric sensing, human computer interaction, bioengineering. Finally, the challenges faced by additive manufacturing of flexible piezoelectric materials and the development trends in the future were summarized and prospected.

Key words: flexible piezoelectric materials, additive manufacturing, ceramic, structure, functional application, review

中图分类号: