无机材料学报 ›› 2024, Vol. 39 ›› Issue (12): 1331-1338.DOI: 10.15541/jim20240206 CSTR: 32189.14.10.15541/jim20240206

所属专题: 【能源环境】储能电池(202412)

• 研究论文 • 上一篇    下一篇

基于DPEPA聚合物凝胶电解质的准固态钠离子电池

孔剑锋1(), 黄杰成1, 刘兆林2, 林存生2(), 王治宇1,2()   

  1. 1.大连理工大学 化工学院, 精细化工国家重点实验室, 大连 116024
    2.中节能万润股份有限公司 新材料开发分公司, 烟台 265503
  • 收稿日期:2024-04-22 修回日期:2024-05-09 出版日期:2024-06-24 网络出版日期:2024-06-24
  • 通讯作者: 王治宇, 教授. E-mail: zywang@dlut.edu.cn;
    林存生, 高级工程师. E-mail: lincunsheng@valiant-cn.com
  • 作者简介:孔剑锋(1999-), 男, 硕士研究生. E-mail: fengfeng1014@mail.dlut.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4101600);国家重点研发计划(2022YFB4101605);国家自然科学基金(52372175);大连市科技创新基金(2023JJ12GX020);中央高校基本科研业务费(DUT24ZD406)

Development of Quasi-solid-state Na-ion Battery Based on DPEPA-derived Gel Polymer Electrolyte

KONG Jianfeng1(), HUANG Jiecheng1, LIU Zhaolin2, LIN Cunsheng2(), WANG Zhiyu1,2()   

  1. 1. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
    2. Branch of New Material Development, Valiant Co., Ltd., Yantai 265503, China
  • Received:2024-04-22 Revised:2024-05-09 Published:2024-06-24 Online:2024-06-24
  • Contact: WANG Zhiyu, professor. E-mail: zywang@dlut.edu.cn;
    LIN Cunsheng, senior engineer. E-mail: lincunsheng@valiant-cn.com
  • About author:KONG Jianfeng (1999-), male, Master candidate. E-mail: fengfeng1014@mail.dlut.edu.cn
  • Supported by:
    National Key R&D Program of China(2022YFB4101600);National Key R&D Program of China(2022YFB4101605);National Natural Science Foundation of China(52372175);Innovation and Technology Fund of Dalian(2023JJ12GX020);Fundamental Research Funds for the Central Universities(DUT24ZD406)

摘要:

与锂离子电池相比, 钠离子电池由于使用价格低廉且钠资源储量丰富, 在实现低成本、规模化储能方面极具优势与市场竞争力。但高度易燃、易泄漏的液态电解液使常规钠离子电池在破损、短路、热失控等情况下存在安全隐患, 并且液态电解液较低的电化学稳定性也制约了钠离子电池应用性能的进一步提升。本研究提出了一种简便易行的原位热聚合方法, 基于二季戊四醇戊-/己-丙烯酸(DPEPA)的自由基聚合反应制备了离子电导率为1.97 mS·cm-1, 钠离子迁移数为0.66, 且具有宽电化学稳定窗口的高性能聚合物凝胶电解质。研究发现DPEPA的最低未占据分子轨道(LUMO)能级低于碳酸乙烯酯(EC)与碳酸二乙酯(DEC)溶剂, 可与NaPF6在负极表面共同优先分解形成稳定的有机-无机复合固体电解质界面膜, 抑制电解液溶剂分解。在此电解质中匹配Na(Ni1/3Fe1/3Mn1/3)O2 (NFM)正极与硬碳(HC)负极, 构建的准固态钠离子全电池在120 mA·g-1电流密度下稳定循环300次后, 容量保持率达92%, 并在20~80 ℃温度区间具有99~120 mAh·g-1的比容量。利用原位X射线衍射仪揭示了NFM正极的高度结构可逆储钠机制与Na+在HC负极中的“吸附-填孔”存储机制。研究表明引入含有低LUMO能级聚合物的凝胶电解质是在增强电池安全性的同时, 提升固态钠离子电池电化学稳定性的有效手段。

关键词: 钠离子电池, 准固态电池, 聚合物凝胶电解质, 原位热驱动自由基聚合, 储钠机制

Abstract:

Compared to Li-ion batteries, Na-ion batteries hold significant advantages and market value for achieving low-cost and large-scale energy storage, thanks to the utilization of cheap and abundant Na resources. However, the use of highly flammable liquid electrolytes with leaky risk raises safety concerns for conventional Na-ion batteries under abuse conditions such as mechanical damage, short-circuiting, and thermal runaway. Limited electrochemical stability of liquid electrolytes also hinders further enhancement of the performance of Na-ion batteries for practical use. This study reports a facile way for the preparation of high-performance gel polymer electrolyte (GPE) by thermal-driven radical in-situ polymerization of dipentaerythritol penta-/hexa-acrylat (DPEPA). This GPE exhibits an ionic conductivity of 1.97 mS·cm-1, a Na+ transference number of 0.66, and a broad electrochemical stability window. The DPEPA displays a lower lowest unoccupied molecular orbit (LUMO) energy level than that of ethylene carbonate (EC) and diethyl carbonate (DEC) solvents, allowing for its preferential decomposition alongside NaPF6 on the anode surface. This leads to a stable organic-inorganic composite film of solid-state electrolyte interphase, inhibiting the decomposition of electrolyte solvents on the anode surface. The quasi-solid-state Na-ion battery employing Na(Ni 1/3Fe1/3Mn 1/3)O2 (NFM) cathode and hard carbon (HC) anode in this GPE exhibits a high capacity retention rate of 92% after 300 stable cycles at a current density of 120 mA·g-1, while achieving the specific capacities of 99-120 mAh·g-1 within a wide temperature range of 20-80 ℃. In-situ X-ray diffractometer analysis reveals the highly reversible structural evolution of the NFM cathode during Na storage and the “adsorption-pore-filling” mechanism of Na+ storage in the HC anode. All data in this research demonstrates that introducing polymers with low LUMO energy levels proves an effective approach to enhance the electrochemical stability of solid-state Na-ion batteries while improving cell safety.

Key words: Na-ion battery, quasi-solid-state battery, gel polymer electrolyte, thermal-driven radical in-situ polymerization, Na storage mechanism

中图分类号: