无机材料学报 ›› 2024, Vol. 39 ›› Issue (5): 517-524.DOI: 10.15541/jim20230464 CSTR: 32189.14.10.15541/jim20230464
所属专题: 【生物材料】肿瘤治疗(202409)
蔡和庆1(), 韩璐1(
), 杨松松1, 薛新玉1, 张扣1, 孙志成1, 刘儒平1, 胡堃1, 危岩2(
)
收稿日期:
2023-10-09
修回日期:
2023-12-07
出版日期:
2024-05-20
网络出版日期:
2023-12-25
通讯作者:
韩 璐, 副教授. E-mail: hanlu@iccas.ac.cn;作者简介:
蔡和庆(1997-), 男, 硕士研究生. E-mail: 724040386@qq.com
基金资助:
CAI Heqing1(), HAN Lu1(
), YANG Songsong1, XUE Xinyu1, ZHANG Kou1, SUN Zhicheng1, LIU Ruping1, HU Kun1, WEI Yan2(
)
Received:
2023-10-09
Revised:
2023-12-07
Published:
2024-05-20
Online:
2023-12-25
Contact:
HAN Lu, associate professor. E-mail: hanlu@iccas.ac.cn;About author:
CAI Heqing (1997-), male, Master candidate. E-mail: 724040386@qq.com
Supported by:
摘要:
四氧化三铁(Fe3O4)磁性纳米颗粒因其制备简单, 在外加磁场作用下具有靶向性,并且表面易接枝等特性, 可作为被动靶向载体应用于基因治疗领域。本研究采用溶剂热法制备纳米颗粒, 并调控堆积生长时间, 制得粒径在4~9 nm范围内可控的油相Fe3O4纳米颗粒; 使用内消旋-2,3-二巯基丁二酸(DMSA)二次取代其表面的油酸分子, 使其具备良好的水相分散性; 通过酰胺化反应在其表面接枝支链型聚乙烯亚胺(PEI), 最终得到Fe3O4-DMSA-PEI磁性纳米颗粒。研究发现, Fe3O4-DMSA-PEI磁性纳米颗粒的表面Zeta电位高达(52.50±1.94) mV, 具有一定的超顺磁性(14.48 emu/g, 1 emu/g=1 A∙m2/kg)。磁性纳米颗粒与质粒DNA的质量比为15 : 1时可完全阻滞DNA在凝胶上的电泳, 装载量高达6.67%。本研究制备的Fe3O4-DMSA-PEI磁性纳米颗粒具有一定的基因负载能力, 有望作为基因载体应用于基因转染领域。
中图分类号:
蔡和庆, 韩璐, 杨松松, 薛新玉, 张扣, 孙志成, 刘儒平, 胡堃, 危岩. 小粒径Fe3O4-DMSA-PEI磁性纳米颗粒的制备及其基因负载能力研究[J]. 无机材料学报, 2024, 39(5): 517-524.
CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading[J]. Journal of Inorganic Materials, 2024, 39(5): 517-524.
图3 样品的粒径分布(a, c)和分散性(b, d)
Fig. 3 Particle size distributions (a, c) and polydispersity indexs (b, d) of samples (a, b) Fe3O4-OA (MNP-1, MNP-2 and MNP-3); (c, d) Fe3O4-OA, Fe3O4-DMSA and Fe3O4-DMSA-PEI Colorful figures are available on website
图8 (a)Fe3O4-OA, (b)Fe3O4-DMSA和(c, d)Fe3O4-DMSA-PEI的变温磁感应曲线
Fig. 8 Variable temperature magnetic induction curves of (a) Fe3O4-OA, (b) Fe3O4-DMSA and (c, d) Fe3O4-DMSA-PEI
[1] | HAMIMED S, JABBERI M, CHATTI A. Nanotechnology in drug and gene delivery. Naunyn-schmiedeberg's Archives of Pharmacology, 2022, 395(7): 769. |
[2] | ZU H, GAO D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. The AAPS Journal, 2021, 23(4): 78. |
[3] |
SINGH P, MIJAKOVIC I. Advances in gold nanoparticle technology as a tool for diagnostics and treatment of cancer. Expert Review of Molecular Diagnostics, 2021, 21(7): 627.
DOI PMID |
[4] | LI H, WU X, YANG B, et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: structure, wettability, degradation, biocompatibility and brain distribution. Materials Science and Engineering: C, 2019, 94: 453. |
[5] | LEVINGSTONE T J, HERBAJ S, REDMOND J, et al. Calcium phosphate nanoparticles-based systems for RNAi delivery: applications in bone tissue regeneration. Nanomaterials, 2020, 10(1): 146. |
[6] | THOMAS T J, TAJMIR-RIAHI H A, PILLAI C K S. Biodegradable polymers for gene delivery. Molecules, 2019, 24(20): 3744. |
[7] | REN S, WANG M, WANG C, et al. Application of non-viral vectors in drug delivery and gene therapy. Polymers, 2021, 13(19): 3307. |
[8] | ALI A, SHAH T, ULLAH R, et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Frontiers in Chemistry, 2021, 9: 629054. |
[9] |
ANDERSON S D, GWENIN V V, GWENIN C. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Research Letters, 2019, 14: 188.
DOI PMID |
[10] |
BI Q, SONG X, HU A, et al. Magnetofection: magic magnetic nanoparticles for efficient gene delivery. Chinese Chemical Letters, 2020, 31(12): 3041.
DOI |
[11] | MAI B T, CONTEH J S, GAVILÁN H, et al. Clickable polymer ligand-functionalized iron oxide nanocubes: a promising nanoplatform for ‘Local Hot Spots’ magnetically triggered drug release. ACS Applied Materials & Interfaces, 2022, 14(43): 48476. |
[12] | SENTURK F, CAKMAK S, KOCUM I C, et al. Effects of radiofrequency exposure on in vitro blood-brain barrier permeability in the presence of magnetic nanoparticles. Biochemical and Biophysical Research Communications, 2022, 597: 91. |
[13] | SHEN B, MA Y, YU S, et al. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo- chemotherapy and intracellular imaging. ACS Applied Materials & Interfaces, 2016, 8(37): 24502. |
[14] | RADOŃ A, ŁUKOWIEC D, KREMZER M, et al. Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials, 2018, 11(5): 735. |
[15] | ASAB G, ZEREFFA E A, SEGHNE T A. Synthesis of silica-coated Fe3O4nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity. International Journal of Biomaterials, 2020, 2020: 4783612. |
[16] | LEMINE O M, OMRI K, ZHANG B, et al. Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices and Microstructures, 2012, 52(4): 793. |
[17] | PATSULA V, KOSINOVÁ L, LOVRIĆ M, et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Applied Materials & Interfaces, 2016, 8(11): 7238. |
[18] | ELMAHAISHI M F, AZIS R S, ISMAIL I, et al. Structural, electromagnetic and microwave properties of magnetite extracted from mill scale waste via conventional ball milling and mechanical alloying techniques. Materials, 2021, 14(22): 7075. |
[19] |
RAFIENIA M, BIGHAM A, HASSANZADEH-TABRIZI S A. Solvothermal synthesis of magnetic spinel ferrites. Journal of Medical Signals and Sensors, 2018, 8(2): 108.
PMID |
[20] |
CHOULY C, POULIQUEN D, LUCET I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 1996, 13(3): 245.
DOI PMID |
[21] | QIU X, WANG Y, XUE Y, et al. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chemical Engineering Journal, 2020, 391: 123564. |
[22] | WULANDARI I O, SULISTYARTI H, SAFITRI A, et al. Development of synthesis method of magnetic nanoparticles modified by oleic acid and chitosan as a candidate for drug delivery agent. Journal of Applied Pharmaceutical Science, 2019, 9(7): 1. |
[23] | VASIĆ K, KNEZ Ž, KONSTANTINOVA E A, et al. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: from characterization to immobilization application. Reactive and Functional Polymers, 2020, 148: 104481. |
[24] | KOO C, HONG H, IM P W, et al. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3O4 core-shell nanoparticles. Nano Convergence, 2020, 7(1): 1. |
[25] | PENG S, WANG Q Y, XIAO X, et al. Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polymer International, 2020, 69(2): 206. |
[26] |
REKER D, RYBAKOVA Y, KIRTANE A R, et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nature Nanotechnology, 2021, 16(6): 725.
DOI PMID |
[27] | ÇITOĞLU S, COSKUN Ö D, TUNG L D, et al. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents. Nanomedicine, 2021, 16(11): 925. |
[28] | FENG X, XUE Y, GONCA S, et al. Ultrasmall superparamagnetic iron oxide nanoparticles for enhanced tumor penetration. Journal of Materials Chemistry B, 2023, 11(15): 3422. |
[29] | NI X, ZHANG J, ZHAO L, et al. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. Journal of Physics and Chemistry of Solids, 2022, 169: 110855. |
[30] | DEMBEK M, BOCIAN S, BUSZEWSKI B. Solvent influence on zeta potential of stationary phase—mobile phase interface. Molecules, 2022, 27(3): 968. |
[31] |
REN Y, JIANG X, PAN D, et al. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules, 2010, 11(12): 3432.
DOI PMID |
[32] |
KIM D Y, KWON J S, LEE J H, et al. Effects of the surface charge of stem cell membranes and DNA/polyethyleneimine nanocomplexes on gene transfection efficiency. Journal of Biomedical Nanotechnology, 2015, 11(3): 522.
PMID |
[33] | ALMESSIERE M A, SLIMANI Y, GÜNGÜNES H, et al. Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials, 2019, 9(6): 820. |
[34] | ARSALANI S, GUIDELLI E J, SILVEIRA M A, et al. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2019, 475: 458. |
[35] | DEVI E C, SINGH S D. Tracing the magnetization curves: a review on their importance, strategy, and outcomes. Journal of Superconductivity and Novel Magnetism, 2021, 34: 15. |
[36] | PIMPHA N, CHALEAWLERT-UMPON S, SUNINTABOON P. Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. Polymer, 2012, 53(10): 2015. |
[1] | 周港怀, 刘耀, 石原, 刘绍军. 活性氧化铝催化剂载体的光固化浆料制备与成型[J]. 无机材料学报, 2022, 37(3): 297-302. |
[2] | 董少杰,王旭东,沈国芳,王晓虹,林开利. 生物陶瓷支架的功能改性及应用研究进展[J]. 无机材料学报, 2020, 35(8): 867-881. |
[3] | 李昊耕,谷红宇,章俞之,宋力昕,吴岭南,齐振一,张涛. 聚合物材料表面原子氧防护技术的研究进展[J]. 无机材料学报, 2019, 34(7): 685-693. |
[4] | 秦士林, 李继成, 李朝晖, 胡忠良, 丁燕怀, 雷钢铁, 肖启振. 基于共价键作用的四氧化三铁-还原氧化石墨烯复合材料的合成及其储锂性能[J]. 无机材料学报, 2018, 33(7): 741-748. |
[5] | 李永生, 陈玲. 可控制备磁性四氧化三铁-金纳米复合颗粒及其催化性能研究[J]. 无机材料学报, 2018, 33(2): 221-228. |
[6] | 施张宇, 李全, 唐颂超, 钱军, 潘泳康, 魏杰. 表面改性对介孔硅酸钙镁/聚醚醚酮复合材料性能的影响[J]. 无机材料学报, 2018, 33(1): 67-74. |
[7] | 李 敏, 洛 园, 许伟佳, 刘家祥. DMFC阳极催化剂Fe3O4@Pt的制备及其催化性[J]. 无机材料学报, 2017, 32(9): 916-922. |
[8] | 陈宇方, 李宇杰, 郑春满, 谢 凯, 陈重学. 富锂层状氧化物正极材料研究进展[J]. 无机材料学报, 2017, 32(8): 792-800. |
[9] | 刘 克, 王际童, 龙东辉, 凌立成. 低密度Fe3O4/中孔炭微球复合材料的可规模制备及吸波性能[J]. 无机材料学报, 2017, 32(10): 1023-1028. |
[10] | 吕智慧, 洪天增, 乃学瑛, 董亚萍, 李 武. 无水硫酸钙晶须的无机-有机表面改性机理研究[J]. 无机材料学报, 2017, 32(1): 81-85. |
[11] | 李 磊, 张巧玲, 范红蕾, 刘有智, 魏 冰, 冯玉杰. 水杨酸和精氨酸改性二氧化钛颗粒的制备及其在油-水界面的光催化反应[J]. 无机材料学报, 2016, 31(4): 413-420. |
[12] | 翟云刚, 董文杰, 高勇平, 牛德超, 陈健壮, 顾金楼, 李永生, 施剑林. 超顺磁金纳米壳复合颗粒的粒径调控及其诊疗应用[J]. 无机材料学报, 2015, 30(9): 950-956. |
[13] | 汤营茂, 缪清清, 肖荔人, 钱庆荣, 陈庆华. 静电纺丝制备磁性碳纳米复合纤维及其表征[J]. 无机材料学报, 2014, 29(8): 827-834. |
[14] | 蒋立新, 蒋柳云, 马 驰, 韩崇涛, 徐莉娟, 熊成东. 新型改性的n-HA与PLGA复合材料的制备及性能研究[J]. 无机材料学报, 2013, 28(7): 751-756. |
[15] | 张 翔, 周大利, 龙 沁, 周加贝, 谭言飞, 柳淑婧. 磷灰石-硅灰石生物活性玻璃陶瓷表面接枝多肽改性研究[J]. 无机材料学报, 2013, 28(10): 1137-1142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||