无机材料学报 ›› 2025, Vol. 40 ›› Issue (3): 271-280.DOI: 10.15541/jim20240385 CSTR: 32189.14.10.15541/jim20240385

• 研究论文 • 上一篇    下一篇

前驱体法制备(Zr, Hf, Nb, Ta, W)C-SiC复相陶瓷及性能研究

李紫薇1,2(), 弓伟露1,2, 崔海峰1, 叶丽1(), 韩伟健1, 赵彤1,2   

  1. 1.中国科学院 化学研究所, 极端环境高分子材料重点实验室, 北京 100190
    2.中国科学院大学 化学学院, 北京100049
  • 收稿日期:2024-08-21 修回日期:2024-10-16 出版日期:2025-03-20 网络出版日期:2025-03-12
  • 通讯作者: 叶 丽, 副研究员. E-mail: yeli@iccas.ac.cn
  • 作者简介:李紫薇(1998-), 女, 硕士研究生. E-mail: liziwi21@iccas.ac.cn

(Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties

LI Ziwei1,2(), GONG Weilu1,2, CUI Haifeng1, YE Li1(), HAN Weijian1, ZHAO Tong1,2   

  1. 1. Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. College of Chemisty, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-08-21 Revised:2024-10-16 Published:2025-03-20 Online:2025-03-12
  • Contact: YE Li, associate professor. E-mail: yeli@iccas.ac.cn
  • About author:LI Ziwei (1998-), female, Master candidate. E-mail: liziwi21@iccas.ac.cn

摘要:

高熵碳化物(HEC)陶瓷具有硬度高、抗氧化、耐腐蚀、耐磨以及高导热等优点, 在极端环境下具有巨大应用潜力。但高熵陶瓷往往脆性较大, 限制了其进一步应用。为了对HEC陶瓷进行增韧, 本工作在(Zr, Hf, Nb, Ta, W)C高熵陶瓷前驱体中加入碳化硅(SiC)的前驱体聚碳硅烷(PCS), 利用PCS裂解过程中原位生成的SiC(SiCi)对HEC陶瓷进行增韧。结果表明, 裂解所得陶瓷中SiC的体积分数为23.38%, SiC相晶粒尺寸小(1.19 μm), 且在高熵陶瓷相中均匀分布。通过研究陶瓷前驱体的裂解过程, 发现PCS裂解产物在温度较低时以无定形的Ox-Si-Cy形式存在, 在1500 ℃以上才开始出现SiC结晶相。以1600 ℃裂解所得(Zr, Hf, Nb, Ta, W)C-SiCi复相陶瓷粉体为原料, 经热压制备了(Zr, Hf, Nb, Ta, W)C-SiCi陶瓷块体, 研究了陶瓷块体的力学性能, 并与添加商品化SiC纳米粉体及SiC晶须增韧的复相陶瓷进行对比。研究发现, 与(Zr, Hf, Nb, Ta, W)C陶瓷相比, 所有复相陶瓷块体的弯曲强度和断裂韧性均得到明显提升, 其中采用聚合物前驱体法原位生成SiC的增韧效果最为明显, 所得陶瓷的弯曲强度和断裂韧性分别为(698±9) MPa和(7.9±0.6) MPa·m1/2, 相比(Zr, Hf, Nb, Ta, W)C陶瓷分别提升了17.71%和41.07%。由于液相聚合物前驱体法制备的复相陶瓷中, SiC的晶粒尺寸最小且分布更加均匀, 在受力时可以消耗更多能量, 阻碍裂纹扩展, 因此陶瓷的断裂韧性得到了大幅提高。

关键词: 聚合物前驱体法, 高熵碳化物, 碳化硅, 力学性能

Abstract:

High-entropy carbide (HEC) ceramics are distinguished by their high hardness, oxidation resistance, corrosion resistance, wear resistance, and high thermal conductivity, positioning them as promising candidates for application in extreme environments. However, inherent brittleness of these high-entropy ceramics limits their further application. In order to enhance the toughness of HEC ceramics, polycarbosilane (PCS), a precursor of silicon carbide (SiC), was added into the precursor of (Zr, Hf, Nb, Ta, W)C high-entropy ceramic. The in-situ formed SiC (SiCi) by pyrolysis of PCS can serve as reinforcement for HEC ceramics. The results demonstrate that the volume fraction of SiC in the ceramics obtained from the pyrolysis of PCS is 23.38%. The SiC phases, with an average grain size of 1.19 μm, are evenly distributed in the high-entropy ceramic matrix. The pyrolysis process of ceramic precursors was investigated, revealing that the pyrolysis products of PCS exit as amorphous Ox-Si-Cy at low pyrolysis temperature, while a crystalline SiC phase emerges when the pyrolysis temperature exceeds 1500 ℃. Bulk (Zr, Hf, Nb, Ta, W)C-SiCi ceramic was prepared by hot-pressing of precursor-derived ceramic powders obtained through pyrolysis at 1600 ℃. Mechanical properties of (Zr, Hf, Nb, Ta, W)C-SiCi ceramic bulk were investigated, and composite ceramic bulks toughened by commercial silicon carbide nanopowders or silicon carbide whiskers were also prepared for comparison. Compared with (Zr, Hf, Nb, Ta, W)C ceramic, all composite ceramic bulks exhibit enhanced flexural strength and toughness. Notably, the in-situ generated SiCi via precursor-derived method shows the most significant toughening effect. Flexural strength and fracture toughness of (Zr, Hf, Nb, Ta, W)C-SiCi ceramic are (698±9) MPa and (7.9±0.6) MPa·m1/2, respectively, representing improvements of 17.71% and 41.07% compared to that of (Zr, Hf, Nb, Ta, W)C ceramic bulk. Taking all above data into comprehensive account, the improvement is mainly due to the small grain size and uniform distribution of SiC in the composite ceramics prepared via precursor-derived method, which enhance energy consumption and hinder crack propagation under external stress.

Key words: precursor-derived method, high-entropy carbide, silicon carbide, mechanical property

中图分类号: