无机材料学报

• • 上一篇    下一篇

基于低含水量普鲁士蓝正极的准固态钠离子电池

王琨鹏1, 刘兆林2, 林存生2, 王治宇1,2   

  1. 1.大连理工大学 化工学院, 精细化工国家重点实验室, 大连 116024;
    2.中节能万润股份有限公司新材料开发分公司, 烟台 265503
  • 收稿日期:2024-02-04 修回日期:2024-04-02 出版日期:2024-04-19 网络出版日期:2024-04-19
  • 作者简介:王琨鹏(2000-), 男, 硕士研究生. E-mail: kpwang@mai.dlut.edu.cn.
  • 基金资助:
    国家重点研发计划 (2022YFB4101600, 2022YFB4101605); 国家自然科学基金(52372175); 大连市科技创新基金(2023JJ12GX020); 中央高校基本科研业务费(DUT22LAB125);

Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode

WANG Kunpeng1, LIU Zhaolin2, LIN Cunsheng2, WANG Zhiyu1,2   

  1. 1. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
    2. Branch of New Material Development, Valiant Co. Ltd., Yantai 265503, China
  • Received:2024-02-04 Revised:2024-04-02 Published:2024-04-19 Online:2024-04-19
  • About author:WANG Kunpeng (2000-), male, Master candidate. E-mail: kpwang@mai.dlut.edu.cn
  • Supported by:
    National Key R&D Program of China (2022YFB4101600, 2022YFB4101605); National Natural Science Foundation of China (52372175); The Innovation and Technology Fund of Dalian (2023JJ12GX020); The Fundamental Research Funds for the Central Universities (DUT22LAB125)

摘要: 与锂离子电池相比,钠离子电池具有低成本、低温性能与安全性更佳等优势,在成本与可靠性敏感的应用领域备受瞩目。高容量、低成本的普鲁士蓝类材料(PBAs)是极具前景的钠离子电池正极材料,但结构中存在的结晶水导致电池性能快速衰减,是限制其应用的瓶颈。本研究提出了一种简便易行的热处理策略,以高效脱除PBAs正极材料中的结晶水,340次循环后的容量保持率由73%提升到88%。利用原位技术揭示了PBAs正极在充放电过程中,晶体结构由三方向立方结构不可逆转变,造成首次库仑效率损失的机制,并针对性地提出在正极中添加Na2C2O4钠补偿剂以解决这一问题。在此基础上,采用高离子电导率、高电化学稳定性的聚乙二醇二丙烯酸酯(PEGDA)准固态电解质,匹配添加Na2C2O4钠补偿剂的低含水量PBAs正极与硬碳(HC)负极,构建了高性能准固态钠离子电池。此类电池在20~500 mA‧g-1电流密度下,比容量为58~105 mAh‧g-1,并可稳定循环超过200次。研究表明高效脱除结晶水,可以显著提高PBAs正极的稳定性与比容量。

关键词: 钠离子电池, 准固态电池, 普鲁士蓝正极, 原位分析

Abstract: In comparison to Li-ion batteries, Na-ion batteries offer the benefits of low cost, good low-temperature performance, and safety, attracting great attention in the cost- and reliability-sensitive applications. With high capacity and low cost, Prussian blue-like materials (PBAs) stand as promising cathode materials for Na-ion batteries. However, the presence of crystalline water within their structure induces fast performance decay of the battery, serving as a critical bottleneck limiting their application. This work reports a facile thermal treatment strategy to effectively remove crystalline water from PBAs cathode materials, improving capacity retention from 73% to 88% after 340 cycles. The in-situ analysis uncovers that the initial loss of Coulombic efficiency of PBAs cathode is a result of its irreversible transformation from a trigonal form to cubic phase upon cycling. This issue can be addressed by introducing of Na2C2O4 to compensate the irreversible Na loss in the cathode. On this basis, a high-performance quasi-solid-state Na-ion battery is built by pairing a low-water-content PBAs cathode with Na2C2O4 additive and a hard carbon (HC) anode within a poly(ethylene glycol) diacrylate (PEGDA)-based quasi-solid-state electrolyte with high ionic conductivity and electrochemical stability. This battery exhibits the specific capacities ranging from 58 to 105 mAh‧g-1 at current densities of 20 to 500 mA‧g-1, capable of sustaining stable cycling for over 200 cycles. This study underscores the significant improvement in stability and capacity of PBAs anode by the efficient removal of crystalline water in them.

Key words: Na-ion battery, quasi-solid-state battery, Prussian blue cathode, in-situ analysis

中图分类号: