无机材料学报

• • 上一篇    下一篇

金属氧化物电催化硝酸盐还原合成氨研究进展

杨鑫1,2,3, 韩春秋2,4, 曹玥晗2, 贺桢2, 周莹1,2   

  1. 1.西南石油大学 油气藏地质及开发工程全国重点实验室, 成都 610500;
    2.西南石油大学 新能源与材料学院, 成都 610500;
    3.天府永兴实验室, 成都 610213;
    4.三峡大学 材料与化工学院, 宜昌 443002
  • 收稿日期:2024-03-05 修回日期:2024-04-07 出版日期:2024-04-19 网络出版日期:2024-04-19
  • 作者简介:杨鑫(1999-), 男, 硕士研究生. E-mail: yangxin9633@outlook.com
  • 基金资助:
    国家重点研发计划(2020YFA0710000); 天府永兴实验室科技攻关任务重大项目(2023KJGG15); 成都市国际科技合作项目(2021-GH02-00052-HZ)

Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia using Metal Oxides

YANG Xin1,2,3, HAN Chunqiu2,4, CAO Yuehan2, HE Zhen2, ZHOU Ying1,2   

  1. 1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China;
    3. Tianfu Yongxing Laboratory, Chengdu 610213, China;
    4. College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002, China
  • Received:2024-03-05 Revised:2024-04-07 Published:2024-04-19 Online:2024-04-19

摘要: 氨不仅是合成化肥的主要原料之一,而且是一种高能量密度的新型燃料。近年来,电催化硝酸盐合成氨技术作为一种绿色可持续的合成途径,具有能源效率高、碳排放低等特点,因此受到了广泛关注,有望替代高能耗和高碳排放的Haber-Bosch法来高效合成氨。然而,目前该技术的反应效率、产物选择性以及催化材料稳定性都难以满足应用需求,迫切需要寻找高效的催化材料促进电催化硝酸盐合成氨技术的进一步发展。近年来,金属氧化物催化材料在电催化硝酸盐合成氨领域展现出良好的催化性能。基于此,本文综述了金属氧化物电催化硝酸盐还原合成氨的研究进展,重点概述了电催化硝酸盐还原合成氨的反应机理,系统介绍了用于电催化硝酸盐还原合成氨的Cu基、Fe基和Ti基等典型催化材料,以及通过形貌调控、表面重构、氧空位构造、元素掺杂和金属助催化材料负载等策略提高催化反应效率、产物选择性及催化材料稳定性的最新研究进展。最后,展望了电催化硝酸盐还原合成氨领域面临的挑战及未来的研究方向。

关键词: 电催化, 硝酸盐还原合成氨, 金属氧化物, 调控策略, 综述

Abstract: Ammonia serves not only as a primary raw material in synthetic fertilizers, but also as a high-energy-density novel fuel. In recent years, electrocatalytic nitrate reduction for ammonia synthesis has gained extensive attention as a green and sustainable approach due to its potential as an eco-friendly and sustainable method that could replace the energy-intensive and high-carbon-emission Haber-Bosch process. Nevertheless, the efficient electrocatalytic ammonia synthesis is still hampered by the low reaction efficiency and product selectivity as well as catalyst stability. Hence, there is an pressing need to develop efficient catalysts to advance electrocatalytic nitrate reduction for ammonia synthesis. Recently, metal oxide catalysts have been at the center of attention for their superior performance in electrocatalytic nitrate reduction for ammonia synthesis. This review consolidates the developments of metal oxide electrocatalysts converting nitrate to ammonia, focusing on elucidating the reaction mechanism and introducing typical metal-based (Cu, Fe, Ti and etc.) catalysts. Additionally, it discusses the latest research progress in enhancing catalytic reaction efficiency, product selectivity, and material stability through strategies like morphology control, surface reconstruction, oxygen vacancy engineering, element doping, metal-assisted catalyst loading and etc. Finally, the article outlines the challenges and future research directions in the realm of electrocatalytic nitrate reduction for ammonia synthesis.

Key words: electrocatalysis, nitrate reduction to ammonia, metal oxides, modulation strategies

中图分类号: