无机材料学报 ›› 2024, Vol. 39 ›› Issue (6): 671-680.DOI: 10.15541/jim20240001

• 研究论文 • 上一篇    下一篇

大气等离子喷涂Y3Al5O12/Al2O3陶瓷涂层的CMAS腐蚀抗力

李捷1,2(), 罗志新1, 崔阳1, 张广珩1,2, 孙鲁超1(), 王京阳1()   

  1. 1.中国科学院 金属研究所, 沈阳 110016
    2.中国科学技术大学 材料科学与工程学院, 沈阳 110016
  • 收稿日期:2024-01-02 修回日期:2024-02-29 出版日期:2024-06-20 网络出版日期:2024-03-05
  • 通讯作者: 孙鲁超, 研究员. E-mail: lcsun@imr.ac.cn;
    王京阳,研究员. E-mail: jywang@imr.ac.cn
  • 作者简介:李捷(1999-), 女, 博士研究生. E-mail: jli20s@imr.ac.cn
  • 基金资助:
    国家自然科学基金(52130204);国家自然科学基金(U21A2063);国家重点研发计划(2021YFB3702300);辽宁省‘兴辽英才计划’项目(XLYC2002018);辽宁省‘兴辽英才计划’项目(XLYC2203090);中国科学院国际伙伴计划(172GJHZ2022094FN)

CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying

LI Jie1,2(), LUO Zhixin1, CUI Yang1, ZHANG Guangheng1,2, SUN Luchao1(), WANG Jingyang1()   

  1. 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
    2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
  • Received:2024-01-02 Revised:2024-02-29 Published:2024-06-20 Online:2024-03-05
  • Contact: SUN Luchao, professor. E-mail: lcsun@imr.ac.cn;
    WANG Jingyang, professor. E-mail: jywang@imr.ac.cn
  • About author:LI Jie (1999-), female, PhD candidate. E-mail: jli20s@imr.ac.cn
  • Supported by:
    National Natural Science Foundation of China(52130204);National Natural Science Foundation of China(U21A2063);National Key R&D Program of China(2021YFB3702300);Liaoning Revitalization Talents Program(XLYC2002018);Liaoning Revitalization Talents Program(XLYC2203090);International Partnership Program of the Chinese Academy of Sciences(172GJHZ2022094FN)

摘要:

探索能够有效抵抗1300 ℃及以上温度钙镁铝硅酸盐(Calcium-Magnesium-Aluminum-Silicate, CMAS)腐蚀的新材料是近年来先进航空发动机用环境障涂层研究的重点任务。本工作围绕具有超强CMAS腐蚀抗力的YAG(Y3Al5O12)/Al2O3体系, 采用大气等离子喷涂(Atmospheric Plasma Spraying, APS)技术制备了具有共晶成分的YAG/Al2O3涂层。通过在1100、1300和1500 ℃对制备态涂层进行热处理, 获得了具有不同微观结构的YAG/Al2O3涂层。利用不同表征手段研究了YAG/Al2O3涂层抵抗1300 ℃ CMAS腐蚀的性能及微观结构对涂层腐蚀抗性的影响。研究结果发现, 经不同温度热处理的YAG/Al2O3涂层与CMAS的反应产物均为石榴石结构固溶体、CaAl2Si2O8和Ca2MgSi2O7。腐蚀机制研究发现, 1100 ℃热处理YAG/Al2O3涂层与CMAS反应界面的近连续分布石榴石固溶体层可有效阻隔CMAS腐蚀元素的扩散; 1500 ℃热处理YAG/Al2O3涂层晶粒尺寸的增加及晶界数量的减少可降低涂层材料在CMAS中的溶解速率, 二者均可通过影响腐蚀过程中的离子传输速率而影响各生成物的竞争析出, 进而提升涂层的CMAS腐蚀抗力。本工作为YAG/Al2O3涂层热处理工艺优化提供了借鉴, 并为通过微观结构优化调控YAG/Al2O3涂层的CMAS腐蚀抗力提供了新思路。

关键词: YAG(Y3Al5O12)/Al2O3, 大气等离子喷涂, 环境障涂层, CMAS腐蚀抗力, 晶界腐蚀, 热处理温度

Abstract:

The investigation of novel materials exhibiting exceptional resistance to calcium-magnesium-aluminum- silicate (CMAS) corrosion at temperatures of 1300 ℃ and above has emerged as a pivotal objective in the advancement of environmental barrier coatings for aircraft engines in recent years. In this study, atmospheric plasma spraying (APS) technology was employed to fabricate YAG(Y3Al5O12)/Al2O3 coatings with eutectic composition, which was acknowledged as a promising material possessing outstanding CMAS corrosion resistance, thereby rendering it suitable for application in environmental barrier coatings. The as-deposited coatings were annealed at 1100, 1300, and 1500 ℃ to obtain different microstructures, and the corrosion resistance as well as mechanism of YAG/Al2O3 coatings against CMAS were investigated by comparing the corrosion results after exposure to CMAS at 1300 ℃. The reaction products between YAG/Al2O3 coatings and CMAS were found to be garnet-structure solid solution, CaAl2Si2O8, and Ca2MgSi2O7. The nearly continuous distribution of the garnet-structure solid solution layer at the reaction interface between YAG/Al2O3 coating annealed at 1100 ℃ and CMAS effectively impedes the diffusion of CMAS corrosion elements. For YAG/Al2O3 coating annealed at 1500 ℃, the increase in grain size and decrease in grain boundaries reduce the dissolution rate of the coating. Both of the above can affect the competitive precipitation of various products by influencing the ion transport rate in the corrosion process, and then improve the CMAS corrosion resistance of the coating. Moreover, heat-treatment temperature can tailor grain size, which influences both dissolution-precipitation rate and competitive precipitation of reaction products during CMAS corrosion. These findings provide guidance for selecting appropriate heat-treatment temperature and offer a novel approach to optimize CMAS corrosion resistance of YAG/Al2O3 coatings through microstructure optimization.

Key words: YAG(Y3Al5O12)/Al2O3, atmospheric plasma spraying, environmental barrier coating, CMAS corrosion resistance, grain boundary corrosion, heat-treatment temperature

中图分类号: