无机材料学报 ›› 2024, Vol. 39 ›› Issue (6): 571-590.DOI: 10.15541/jim20230609

• 综述 • 上一篇    下一篇

超高温陶瓷复合材料研究进展

张幸红(), 王义铭, 程源, 董顺, 胡平()   

  1. 哈尔滨工业大学 航天学院, 复合材料与结构研究所, 哈尔滨 150001
  • 收稿日期:2023-12-31 修回日期:2024-03-18 出版日期:2024-06-20 网络出版日期:2024-03-22
  • 通讯作者: 胡平, 教授. E-mail: huping@hit.edu.cn
  • 作者简介:张幸红(1972-), 男, 博士, 教授. E-mail: zhangxh@hit.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(52032003);国家自然科学基金重大项目子课题(52293372);国家自然科学基金青年基金项目(52102093)

Research Progress on Ultra-high Temperature Ceramic Composites

ZHANG Xinghong(), WANG Yiming, CHENG Yuan, DONG Shun, HU Ping()   

  1. Center for Composite Materials and Structure, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
  • Received:2023-12-31 Revised:2024-03-18 Published:2024-06-20 Online:2024-03-22
  • Contact: HU Ping, professor. E-mail: huping@hit.edu.cn
  • About author:ZHANG Xinghong (1972-), male, PhD, professor. E-mail: zhangxh@hit.edu.cn
  • Supported by:
    Key Program of the National Natural Science Foundation of China(52032003);Major Program of the National Natural Science Foundation of China(52293372);Young Scientists Fund of the National Natural Science Foundation of China(52102093)

摘要:

随着高速飞行器朝着更宽空域、更长时间和更高速度的方向发展, 对飞行器的鼻锥、前缘和发动机燃烧室等关键结构的热防护性能提出了更加严苛的要求, 发展在极端环境下使用的高性能热防护材料是当前的研究重点。超高温陶瓷复合材料具有优异的抗氧化烧蚀性能, 是一类极具应用潜力的非烧蚀型热防护材料。然而, 本征脆性问题限制了超高温陶瓷复合材料的工程化应用, 需通过组分结构调控对其进行强韧化。同时, 飞行器有效载荷提升也对超高温陶瓷复合材料提出了轻量化的要求。本文系统概述了超高温陶瓷复合材料近年来取得的主要研究进展, 包括压力烧结、泥浆浸渍、前驱体浸渍裂解、反应熔渗、化学气相渗透/沉积与“固-液”组合工艺等制备方法, 颗粒、晶须、软相物质、短切纤维和连续纤维等强韧化方法及其机制, 抗氧化烧蚀性能与机理, 以及轻量化设计等。讨论了超高温陶瓷复合材料组分、微结构和性能之间的关系, 并指出了超高温陶瓷复合材料目前存在的挑战以及未来的发展趋势。

关键词: 超高温陶瓷, 复合材料, 强韧化, 抗氧化烧蚀, 轻量化, 综述

Abstract:

In response to the evolving landscape of high-speed aircraft, characterized by an expansive airspace, prolonged flight durations, and increased velocities, the thermal protection requirements for key structures such as the nose cone, leading edge, and engine combustion chamber have become more exacting. This necessitates a concerted focus on the development of high-performance thermal protection materials capable of withstanding extreme conditions. Ultra-high temperature ceramic composites have emerged as noteworthy candidates, showcasing exceptional oxidation and ablation resistance. Despite their commendable properties, the inherent brittleness of these composites poses a significant obstacle to widespread engineering applications. To address this limitation, there is a growing emphasis on toughening through structural modulation. Simultaneously, the imperative to enhance aircraft payload capacity underscores the demand for lightweight ultra-high temperature ceramic composites. This paper provides a systematic overview of the major research advances made in recent years on ultra-high temperature ceramic composites, including preparation methods such as pressure sintering, slurry infiltration, precursor impregnation and pyrolysis, reactive melt infiltration, chemical vapor infiltration/deposition, and “solid-liquid” combination process, toughening methods such as particles, whiskers, soft-phase materials, short-cut fibers, and continuous fibers, as well as oxidation ablation resistant properities and mechanisms, and lightweighting design. The relationship between the components, microstructures and properties of ultra-high temperature ceramic composites is discussed in depth, and the current challenges as well as the future development trends of ultra-high temperature ceramic composites are presented.

Key words: ultra-high temperature ceramic, composite, toughening, oxidation ablation resistance, lightweight, review

中图分类号: