In response to the evolving landscape of high-speed aircraft, characterized by an expansive airspace, prolonged flight durations, and increased velocities, the thermal protection requirements for key structures such as the nose cone, leading edge, and engine combustion chamber have become more exacting. This necessitates a concerted focus on the development of high-performance thermal protection materials capable of withstanding extreme conditions. Ultra-high temperature ceramic composites have emerged as noteworthy candidates, showcasing exceptional oxidation and ablation resistance. Despite their commendable properties, the inherent brittleness of these composites poses a significant obstacle to widespread engineering applications. To address this limitation, there is a growing emphasis on toughening through structural modulation. Simultaneously, the imperative to enhance aircraft payload capacity underscores the demand for lightweight ultra-high temperature ceramic composites. This paper provides a systematic overview of the major research advances made in recent years on ultra-high temperature ceramic composites, including preparation methods such as pressure sintering, slurry infiltration, precursor impregnation and pyrolysis, reactive melt infiltration, chemical vapor infiltration/deposition, and “solid-liquid” combination process, toughening methods such as particles, whiskers, soft-phase materials, short-cut fibers, and continuous fibers, as well as oxidation ablation resistant properities and mechanisms, and lightweighting design. The relationship between the components, microstructures and properties of ultra-high temperature ceramic composites is discussed in depth, and the current challenges as well as the future development trends of ultra-high temperature ceramic composites are presented.
The development of high-speed flight technology has put forward an urgent demand for high- performance thermal structure materials. High-entropy carbides (HECs) ceramics are a fast-emerging family of materials that combine the excellent properties of high-entropy ceramics and ultra-high temperature ceramics. HECs have a broad application prospect in extreme service environments, which has received extensive attention from scholars in recent years. Compared with traditional ultra-high temperature carbides containing only one or two transition metal elements, HECs have a greater potential for development because of their improved comprehensive performance and greater designability of composition and properties. After successive exploration of HECs in recent years, researchers have obtained many interesting results, developed a variety of preparation methods, and gained comprehensive understanding of microstructure and properties. The basic theories and the laws on HECs obtained from experimental process are reviewed in this paper. Preparation methods of HECs including powders, blocks, coatings and films, as well as fiber-reinforced HECs-based composites are summarized. Research progress on the properties of HECs, such as the mechanical properties, thermal properties, and especially the oxidation and ablation resistance related to high-temperature applications, is reviewed and discussed. Finally, the scientific issues that need to be further explored in this area are emphasized, and the prospects are proposed.
As a kind of important functional material, flexible piezoelectric materials can realize the effective conversion between mechanical energy and electrical energy, with the advantages of good toughness, high plasticity and light weight. Therefore, they can be attached to the human body to obtain human or environment information in real time, which is widely used in the fields of motion detection, health monitoring, and human-computer interaction. Due to high requirements of various three-dimensional (3D) structures of the flexible piezoelectric materials, additive manufacturing has been extensively utilized to fabricate different kinds of piezoelectric materials. This technology is expected to break the bottleneck of traditional processing of piezoelectric material by improving the structural design freedom and the performance of flexible piezoelectric materials, and provides enormous potential and opportunities for the application of flexible piezoelectric materials. Based on the introduction of the classification and features of flexible piezoelectric materials, this paper explained the main additive manufacturing technologies, including fused deposition modeling, direct ink writing, selective laser sintering, electric-assisted direct writing, stereolithography, and inkjet printing that commonly used in processing these materials. Then, various structural designs, such as multi-layer structure, porous structure, and interdigital structure for the flexible piezoelectric materials produced by different additive manufacturing approaches were reviewed. Moreover, the applications of additive manufactured flexible piezoelectric materials in energy harvesting, piezoelectric sensing, human-computer interaction, and bioengineering were introduced. Finally, the challenges faced by additive manufacturing on processing flexible piezoelectric materials and the development trends in the future were summarized and prospected.
Nowadays, artificial intelligence (AI) is playing an increasingly important role in human society. Running AI algorithms represented by deep learning places great demands on computational power of hardware. However, with Moore's Law approaching physical limitations, the traditional Von Neumann computing architecture cannot meet the urgent demand for promoting hardware computational power. The brain-inspired neuromorphic computing (NC) employing an integrated processing-memory architecture is expected to provide an important hardware basis for developing novel AI technologies with low energy consumption and high computational power. Under this conception, artificial neurons and synapses, as the core components of NC systems, have become a research hotspot. This paper aims to provide a comprehensive review on the development of oxide neuron devices. Firstly, several mathematical models of neurons are described. Then, recent progress of Hodgkin-Huxley neurons, leaky integrate-and-fire neurons and oscillatory neurons based on oxide electronic devices is introduced in detail. The effects of device structures and working mechanisms on neuronal performance are systematically analyzed. Next, the hardware implementation of spiking neural networks and oscillatory neural networks based on oxide artificial neurons is demonstrated. Finally, the challenges of oxide neuron devices, arrays and networks, as well as prospect for their applications are pointed out.
Oxide ceramics, known for their outstanding strength and excellent oxidation and corrosion resistance, are prime candidates for high-temperature structural materials of aero-engines. These materials hold vast potential for application in high-end equipment fields of the aerospace industry. Compared with traditional ceramic preparation methods, laser additive manufacturing (LAM) can directly realize the integrated forming from raw powders to high-performance components in one step. LAM stands out for its high forming efficiency and good flexibility, enabling rapid production of large complex structural components with high performance and high precision. Recently, research on LAM for melt-grown oxide ceramics, which involves liquid-solid phase transition, has surged as a hot topic. This paper begins by outlining the basic principles of LAM technology, with an emphasis on the process characteristics of two typical LAM technologies: selective laser melting and laser directed energy deposition. On this basis, the paper summarizes the microstructure characteristics of several different oxide ceramics prepared by LAM and examines how process parameters influence these microstructures. The differences in mechanical properties of laser additive manufactured oxide ceramics with different systems are also summarized. Finally, the existing problems in this field are sorted out and analyzed, and the future development trend is prospected.
Smart windows have gained tremendous attention because of their ability to dynamically modulate the solar radiation to minimize energy consumption and improve indoor living comfort. Vanadium dioxide (VO2) is one of the most attractive thermochromic materials for energy-saving smart windows due to its reversible metal-to-insulator transition at a critical temperature of ~68 ℃ and accompanying great change of its optical transmittance. However, VO2 itself has a couple of significant limitations as a smart window material: high phase transition temperature (τc), low luminous transmittance (Tlum) and insufficient solar energy modulation ability (ΔTsol). Several methods have been used to grow VO2 thin films with improved properties to meet the specific requirements for smart windows applications. The phase transition temperature (τc) should be reduced to near room temperature, in the meantime luminous transmittance (Tlum) and solar energy modulation ability (ΔTsol) should be high enough for the modulation of indoor temperature self-adapted to seasons and climate. The most common way to reduce τc is by doping. To enhance Tlum and ΔTsol, multilayer structures and/or nanocomposite film have been widely adopted. Chemical vapor deposition (CVD) is a promising technique to produce high quality and highly uniform VO2 thin film with different morphologies in large scale and at low costs. In this paper, various CVD techniques, such as atmospheric pressure chemical vapor deposition (APCVD), aerosol-assisted chemical vapor deposition (AACVD), low-pressure chemical vapor deposition (LPCVD), metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD), are examined with respect to their advantages for VO2 deposition, film quality and the strategies for film quality improvement. Finally, challenges and opportunities for further research and development of VO2 thermochromic films using PECVD technique are emphasized.
Ammonia serves not only as a primary raw material in synthetic fertilizers, but also as a novel high-energy- density fuel. In recent years, electrocatalytic nitrate reduction for ammonia synthesis has gained extensive attention as a green and sustainable approach due to its potential as an eco-friendly and sustainable way that could replace the energy-intensive and high-carbon-emission Haber-Bosch process. Nevertheless, the efficient electrocatalytic ammonia synthesis is still hampered by low reaction efficiency and product selectivity as well as catalyst stability. Hence, there is a pressing need to develop efficient catalysts to advance electrocatalytic nitrate reduction for ammonia synthesis. Recently, metal oxide catalysts have been at the center of attention for their superior performance in electrocatalytic nitrate reduction for ammonia synthesis. This review consolidates the developments of metal oxide electrocatalysts converting nitrate to ammonia, focusing on elucidating the reaction mechanism and introducing typical metal-based (Cu, Fe, Ti, etc.) catalysts. Additionally, it discusses the latest research progress in enhancing catalytic reaction efficiency, product selectivity, and material stability through strategies like morphology control, surface reconstruction, oxygen vacancy engineering, element doping, metal-assisted catalyst loading, etc. Finally, the paper outlines the challenges and future research directions in the realm of electrocatalytic nitrate reduction for ammonia synthesis.
Recently, organic-inorganic hybrid perovskite solar cells have demonstrated a broad commercial prospect due to their high photoelectric conversion efficiency (PCE) and low fabricating costs. During the past decades, the highest reported PCE of small-area (<1 cm2) perovskite solar cells (PSCs) rose to 26.10%, and those of large-area (1-10 cm2), mini-module level (10-800 cm2) and module level (>800 cm2) PSCs increased to 24.35%, 22.40% and 18.60%, respectively. The performance of PSCs decreases dramatically with the area increasing due to limitation of the deposition method and the poor quality of large-area perovskite films. Spin-coating method is not suitable for actual industrial production, while the scalable deposition methods including blade-coating and slot-die coating still face the difficulty of precisely controlling nucleation and crystallization of the perovskite films with large area. This review summarized preparation methods of large-area perovskite films, and discussed the film-forming mechanism and strategies for high-quality perovskite films. Finally, relevant outlooks on technologies and applications for large-area PSCs with high performances and stabilities were analyzed. This review is expected to provide insights on the research of large-area PSCs with high performance.
Absorptive materials, by absorbing electromagnetic wave energy, effectively mitigate electromagnetic interference through reduction or elimination of wave reflection. The electromagnetic parameters of materials determine their electromagnetic wave absorption performance. Traditional control strategies, such as adjusting filler ratio, changing macroscopic morphology, and regulating composite methods, have certain limitations to control their structure and cannot fundamentally alter their electromagnetic parameters, which severely hinders their further development. Now, micro-nanostructure design strategies can basically change electromagnetic parameters of the materials by altering their electrical conductivity, charge density and magnetic properties, showing significant advantages in controlling electromagnetic wave absorption capacity. However, the precise micro-nanostructure design and the mass production still face challenges to be overcome. Additionally, structure-property relationship between micro-nanostructures and electromagnetic wave response, and its underline mechanisms are still not fully understood. Herein, a comprehensive review on these relationships was introduced to elucidate the advantages of micro-nanostructure design strategies for regulating electromagnetic wave absorption capacity. Moreover, by introducing these strategies, such as element doping, surface effect modulation and nucleation-controlled growth, this review provides researchers with deep insights and theoretical guidance for modulating electromagnetic properties through micro-nanostructure design. Finally, the research progresses on electromagnetic performance modulation through micro-nanostructure design based on the case of quantum dots, nanocrystals and nanowires, as well as the current research status and prospects in the field of electromagnetic absorption were summarized, providing a theoretical foundation and strategic support for the development of micro-nanoparticles.
Continuous silicon carbide fiber reinforced silicon carbide composite (SiCf/SiC) is a critical structural material for the development of next-generation aircraft engines. The interfacial property is one of the important factors determining the material mechanical properties. Therefore, this study characterized the interfacial mechanical properties of domestic third-generation 2.5D SiCf/SiC and investigated its relationship with tensile properties. The residual stress of the 2.5D SiCf/SiC constituents and interfacial sliding stress (IFSS) were quantitatively analyzed by hysteresis characteristics during the cyclic tension loading/unloading test. Statistical distributions of the in-situ fiber strength $({{\sigma }_{\text{fu}}})$ were obtained based on the fracture mirror radius of pull-out fibers. Interfacial shear strength (ISS) and interfacial debonding energy (Gi) were obtained through the push-in method. Results show that combination of macroscopic and microscopic methods can comprehensively describe the interfacial mechanical performance of 2.5D SiCf/SiC from crack initiation to final debonding. The IFSS, ISS, and Gi of 2.5D SiCf/SiC are 56 MPa, (28 ± 5) MPa, and (2.7 ± 0.6) J/m², respectively. Values of ISS and Gi indicate weak interface bonding, causing it susceptible to cracking under shear stress, while the large IFSS suggests that relative fiber sliding is inhibited after interface debonding, hindering fiber pull-out. The obtained interfacial properties can predict the proportional limit stress (${{\sigma }_{\text{PLS}}}$) accurately according to the ACK model. Based on the interfacial properties and the in-situ fiber strength (${{\sigma }_{\text{fu}}}$), the tensile strength of 2.5D SiCf/SiC is predicted to be higher than the experimental value, which is related to the interfacial radial compressive residual stress and residual tensile stress endured by the fiber.
Continuous SiC fiber-reinforced SiC (SiCf/SiC) composites possess high specific strength, high specific modulus, high-temperature resistance, and radiation resistance, making them suitable for applications in hot-end parts of advanced aero-engines and claddings of nuclear reactors. SiCf/SiC composites are composed of fibers, interfaces and matrix, endowing them with complex multi-scale structural characteristics. These composites are designed to serve in harsh environment, and their damage and failure process are complex. A profound understanding and accurate analysis of damage and failure mechanisms of SiCf/SiC composites under service environments are of great significance for the optimized design of materials and the reliable service of components. Traditional “post-mortem analysis” methods are incapable of acquiring data during the damage and failure process of materials under complex service environments. Therefore, there is an urgent need to develop in-situ characterization techniques for composites under high-temperature service environments. This paper reviewed the principles, advantages, and limitations of in-situ monitoring methods based on scanning electron microscopy, digital image correlation, micro computational tomography, acoustic emission, and electrical resistance. It focused on the latest research progress in the high-temperature mechanical characterization of SiCf/SiC composites using various in-situ monitoring methods and combinations thereof. It summarized the challenges in the in-situ monitoring technologies of SiCf/SiC composites under high-temperature environments and provided a preliminary outlook on the future development directions, such as the combined use of multiple in-situ monitoring techniques, new detection technologies like terahertz radiation, and in-situ damage monitoring methods for complex components.
NiFeOH/CoP/NF composite electrode was fabricated by constructing a metal hydroxide layer on the surface of cobalt phosphide via hydrothermal, phosphating, and electrodeposition methods. The electrolytic water splitting to hydrogen performance by as-prepared electrode was investigated in 1.0 mol/L KOH medium. NiFeOH/CoP/NF composite electrode exhibited excellent water electrolysis performance, and the required overpotentials for HER and OER at 100 mA/cm2 current density were 141 and 372 mV, respectively. When NiFeOH/CoP/NF electrode served as both cathode and anode for water splitting, only 1.61 V voltage was required to reach current density of 10 mA/cm2. Because NiFeOH protection layer enhanced the electrocatalytic activity and stability of CoP for water splitting, NiFeOH/CoP/NF composite electrode exhibited high stability during the galvanostatic electrolysis in the HER and OER, and its activity could maintain 60000 s without significant performance degradation. The photovoltaic-electrolytic water cell constructed with two NiFeOH/CoP/NF electrodes and GaAs solar cell showed 18.0% efficiency of solar to hydrogen under 100 mW/cm2 simulated solar irradiation and worked stably for 200 h.
The development trend of high voltage, high current and high-power density of power semiconductor devices has raised the requirement for the heat dissipation capability and reliability of ceramic substrates in devices. Silicon nitride (Si3N4) ceramics, known for their high thermal conductivity and excellent mechanical properties, have emerged as a preferred thermal dissipation substrate material for high-power electronic devices. However, there is a significant gap between experimental and theoretical values of thermal conductivity in Si3N4 ceramics. The long period of heat preservation during preparation leads to excessive grain growth, compromising mechanical properties and increasing costs, which hinders large-scale application. Lattice oxygen defects act as main factor limiting thermal conductivity of Si3N4 ceramics. Now, researchers are exploring ways to promote removal of lattice oxygen and full development of bimodal morphology formation of Si3N4, by selecting non-oxide sintering additives to reduce the oxygen content in the system, adjusting the composition and properties of the liquid phase, constructing a “nitrogen-rich-oxygen-deficient” liquid phase, and regulating the dissolution and precipitation process in the liquid phase. These efforts aim to the synergistic optimization of thermal conductivity-mechanical properties of Si3N4 ceramics. Based on the elemental classification, we review the non-oxide sintering additives developed at domestic and abroad, explain how they improve the thermal conductivity of Si3N4 ceramics from liquid-phase modulation and microscopic morphology control, analyze the grain development and morphology evolution laws, and discusse the mechanism of lattice oxygen removal. The out look on future development of high thermal conductivity Si3N4 ceramics is also prospected.
Heteroepitaxy provides an effective path for the synthesis of diamond wafers. After more than 20 years of development, the diamond nucleation and growth technology on iridium substrates has enabled to prepare crystals with a maximum diameter of 3.5 inches, which opens a door to application diamond as ultimate semiconductor in the future chip industry. However, a series of problems that occur on heterogeneous substrates, such as surface nucleation, bias process window, and diamond epitaxial growth, need to overcome from the perspective of growth thermodynamics. In this study, aiming at the key issue how diamond can achieve epitaxial nucleation and growth in chemical vapor deposition atmosphere, a simulation study was carried out on the nucleation and growth process of diamond at the atomic scale based on the first-principle calculation. The results show that the adsorption of C atoms on the surface of the Ir substrate is more stable than that on the bulk phase, which indicates that diamond nucleation can only occur on the substrate surface. The number of C atoms of sp3 hybridization in the amorphous hydrogenated carbon layer increases firstly and then decreases with the increase of ion kinetic energy under ion bombardment, confirming the existence of the ion kinetic energy or bias voltage window in the high-density nucleation of diamond. The interfacial binding energy is the lowest (about -0.58 eV/C) when diamond is epitaxially grown along the Ir substrate, meaning that the interface binding energy is the decisive thermodynamic factor for the epitaxial growth. In conclusion, this study clarifies the thermodynamic mechanism of single crystal diamond epitaxial growth under the bias-assisted ion bombardment, and points out a great significant guidance for the growth of diamond and other carbon based semiconductors.
Molten salt electrolysis is the key technology for dry reprocessing of spent fuel in the nuclear energy industry. High-temperature molten salt can cause severe corrosion to crucible materials used for spent fuel, so the selection of the crucible material with good resistance to high temperature and corrosion is crucial for the development of the dry reprocessing method. Si3N4 is considered as a promising candidate for the crucible used in dry reprocessing, primarily due to its excellent high-temperature thermal and mechanical properties. However, its resistance to high-temperature molten salts and water vapor has not been fully investigated. In this work, the corrosion behavior of Si3N4 in LiCl-KCl and NaCl-2CsCl molten salt under Ar atmosphere and water vapor (5%H2O-10%O2-85%Ar) was investigated. The results show that in argon atmosphere, Si3N4 undergoes slight grain boundary corrosion in LiCl-KCl molten salt, while NaCl-2CsCl molten salt presents weak corrosion on Si3N4. In 5%H2O-10%O2-85%Ar water vapor environment, LiCl-KCl molten salt prefers to attack the grain boundary phase. Si3N4 shows serious corrosion degradation in the NaCl-2CsCl molten salt compared with the corrosion level in argon atmosphere. The water vapor environment significantly promotes the corrosion of Si3N4 in the molten salt environment, while the grain boundary phase is the most susceptible site for the corrosion of Si3N4. In addition, no direct correlation is found between the wettability and corrosion resistance of LiCl-KCl and NaCl-2CsCl molten salts. Results of this work elucidate the mechanism of high-temperature molten salt-water vapor-induced degradation of Si3N4, offering guidelines for the selection of crucibles in the dry reprocessing of spent fuel.
Bentonite is an abundant, cheap and readily available natural clay mineral, with montmorillonite (MMT) as its main mineral composition. MMT possesses excellent ion exchange, adsorption and ion transport properties due to its unique two-dimensional layered nanostructure, abundant pore structure, and high specific surface area. Moreover, it also possesses excellent thermal, chemical and mechanical stabilities. In recent years, MMT has attracted extensive attention in the field of electrochemical energy storage owing to the above excellent characteristics, especially the inherent fast ion (Li+, Na+, Zn2+, etc.) transport properties. Thus, the bentonite-based functional materials have been widely applied to the key components (i.e., electrodes, polymer electrolytes, and separators) of electrochemical energy storage devices and show good application prospects. In this review, the structure and physicochemical properties of bentonite are firstly introduced, and then the research progress of bentonite-based functional materials in the field of electrochemical energy storage, mainly including metal anodes, lithium-sulfur battery cathodes, solid/gel polymer electrolytes, and polymer separators, is comprehensively summarized. On the basis of these facts, the ion transport promotion mechanism of bentonite-based functional materials during the process of electrochemical energy storage is elaborated. Finally, the current problems and challenges faced by application of bentonite-based materials in electrochemical energy storage devices are pondered, and the possible future research directions are prospected. This review provides useful guidance for the design and development of bentonite-based electrochemical energy storage functional materials.
TiO2 nanomaterials are widely used photocatalysts due to high photocatalytic activity, good chemical stability, low cost, and nontoxicity. However, its lower photon utilization efficiency is still limited by larger bandgap width and higher recombination rate between photon and hole. In this study, two-dimensional TiO2 nanosheets were synthesized via microetching, which were then inserted by ruthenium atoms to form an efficient photocatalyst Ru@TiO2 with sandwich structure. The surface morphology, electronic structure, photoelectric properties, and photocatalytic degradation performance of tetracycline hydrochloride of Ru@TiO2 sandwich structure were investigated using different measurements. Results indicated that the material’s photoresponse range extended from UV to visible- near-infrared regions, improving photon absorption and carrier separation efficiency while enhancing photocatalytic activity. Under simulated sunlight irradiation (AM 1.5 G, 100 mW·cm-2) for 80 min, sandwich structured Ru@TiO2 efficient photocatalyst exhibited superior degradation performance on tetracycline hydrochloride with a degradation efficiency up to 91.91%. This work offers an effective way for the construction of efficient TiO2 based photocatalysts.
Owing to the high strength/toughness and excellent anti-oxidation ability, continuous fiber reinforced ceramic matrix composites have become the preferred candidates for high temperature structural materials in aerospace field. Reactive melt infiltration can achieve the large-scale, short-cycle and low-cost production of ceramic matrix composites, which has been widely considered to be one of the most promising technologies from a commercial perspective. However, the mechanical and anti-oxidation/ablation properties of obtained composites prepared by conventional reactive melt infiltration are not satisfactory due to the existence of residual carbon and corroded fibers. In order to address the problems, relevant researchers constructed porous carbon matrix to replace conventional densified structure to promote its ceramic transformation and the consumption of reactive melt, thus achieving the improved performance of ceramic matrix composites. This paper reviewed the research progress about the preparation of SiC ceramics, SiC/SiC composites, C/SiC composites, and ultra-high temperature ceramic matrix composites by porous carbon ceramization strategy. Besides, the superiority of the method was verified compared to conventional reactive melt infiltration. The development of preparation methods for porous carbon matrix was also summarized. Finally, in term of the requirements of basic theory and technology for advanced ceramic matrix composites, the prospect for the future development of improved reactive melt infiltration to prepared ceramic matrix composites was discussed.
Hysteresis effect greatly impacted performance and stability of perovskite solar cells. Ion migration and the resulting accumulation of interface ions were widely recognized as the most important origins. In this study, upconversion luminescent nanoparticles (UCNP) were used to modify the interface of the electron transport layer/perovskite active layer and the intrinsic perovskite active layer, and the effects of UCNP on the morphology, structure, spectral/optoelectronic properties, and ion migration kinetics of perovskite were systematically explored. The results indicated that the device with UCNP modified perovskite active layer has the best photoelectric conversion efficiency (PCE, 16.27%) and significantly improves the hysteresis factor (HF, 0.05). Furthermore, circuit switching transient optoelectronic technology was employed to investigate the ion migration kinetics without interference from photo-generated carriers, revealing the dual role of UCNP in suppressing ion migration and accumulation during the optoelectronic conversion process of perovskite solar cells. On the one hand, UCNP formed barrier layers that hinder ion accumulation. On the other hand, UCNP infiltrated into grain boundaries of perovskite phase during annealing, hindering ion migration and reducing the recovery voltage from 0.43 V to 0.28 V. The mechanism of carriers and ions interaction was explained based on the polarization-induced trap state model to declare the process of UCNP suppressing the hysteresis of perovskite photovoltaic devices. This work provides effective solution for regulating the hysteresis of perovskite solar cells.
Silicon carbide ceramics are important engineering materials, but their application is limited by the inherent brittleness. Two-dimensional graphene, with its excellent properties, can be used as a second phase to improve the performance of silicon carbide ceramics. However, due to poor dispersion of graphene in the ceramic matrix, it is a challenge to fully exploit the modifying effect of graphene in composite materials. To address these challenges, SiC-based ceramic materials incorporating graphene nanosheets (GNPs) were synthesized using ceramic organic precursor polycarbosilane and industrial expandable graphite as starting materials. The precursor intercalation technique was employed to fabricate SiC/GNPs ceramic composites with GNPs volume fraction of 1%, 3%, and 5%. The GNPs were uniformly arranged in an array-like parallel fashion in the SiC ceramic matrix, showing excellent orientation. With the GNPs content increasing, the spacing between GNPs within the array decreased, indicating tunable microstructural topology. The addition of GNPs greatly enhanced the fracture toughness of SiC ceramics. When the GNPs content was 3%, the relative density of the samples reached 98.5%, the bending strength reached 445 MPa, and the fracture toughness (KIC value) peaked at 5.67 MPa·m1/2, surpassing pure SiC ceramics by 40%, which was primarily attributed to crack deflection and bridging induced by the GNPs. However, further increase in GNPs content led to a decrease in fracture toughness to 4.37 MPa·m1/2. These SiC-based ceramic composites with a graphene array have potential application in design and development of novel “structure-function integration” SiC-based ceramic devices.
Intermediate-temperature solid oxide fuel cells (IT-SOFCs), as the operating temperature decreases, require cathode materials with high catalytic activity. In this study, double perovskite Sr2CoFeO5+δ (SCF) was synthesized by Sol-Gel method, and effect of SCF cathode compounded with 20% (molar fraction) Sm2O3 doped CeO2 (SDC) at different ratios on the electrode performance was elucidated. The SOFC single-cell performance was improved by optimized chemical expansion and area-specific resistance (ASR) from composite electrodes. Results show that, SCF cathode after annealing at 950 ℃ for 10 h exhibits good chemical compatibility with common electrolytes. For the composite of SCF and SDC at a mass ratio of 1 : 1, the average thermal expansion coefficient (TEC) can be significantly reduced from 2.44×10−5 K-1 of pure SCF to 1.54×10−5 K-1. ASR of SCF−xSDC (x=20, 30, 40, 50, x: mass percentage) composite cathodes are as low as 0.036, 0.034, 0.028 and 0.092 Ω·cm2 at 800 ℃, respectively. The SCF−40SDC composite cathode displays the lowest ASR value among SCF−xSDC in the whole temperature range. Based on the 0.3 mm-thick La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte, the maximum power density of SOFC using SCF−40SDC (757 mW·cm−2) as a cathode is higher than that of pure SCF (684 mW·cm−2). These results demonstrate that the SCF−40SDC composite cathode is a promising candidate for application in IT-SOFCs.
Antiferroelectric (AFE) materials exhibit great potential in the application of high-performance dielectric energy storage capacitors due to their electric field-induced AFE-ferroelectric (FE) phase transition. However, the large hysteresis of field-induced phase transition makes it difficult to simultaneously achieve high energy-storage density (Wrec) and efficiency (η) for AFEs. This work improved the energy-storage performance of NaNbO3-based lead-free AFE ceramics by introducing the third group Bi(Mg0.5Ti0.5)O3 into 0.76NaNbO3-0.24(Bi0.5Na0.5) TiO3 to regulate its relaxation characteristics. Novel lead-free AFE ceramics, (0.76-x)NaNbO3-0.24(Bi0.5Na0.5)TiO3-xBi(Mg0.5Ti0.5)O3, were prepared by a traditional solid-state reaction method. Their phase structure and microstructure as well as dielectric, energy-storage, and charge-discharge characteristics were studied. The results indicated that introduction of Bi(Mg0.5Ti0.5)O3 obviously enhanced the dielectric relaxor behavior of the matrix without changing its AFE R-phase structure, which led to the significantly reduced polarization hysteresis. Especially, a linear-like polarization-field hysteresis loop with extremely-low hysteresis was obtained in the composition of x=0.050. At the same time, microstructure of the ceramic was effectively optimized, its dielectric constant decreased, and its breakdown strength had significant enhanced. As a result, a high Wrec=3.5 J/cm3 and a high η=93% were simultaneously achieved under a moderate electric field of 30 kV/mm in the x=0.050 ceramic. Moreover, the x=0.050 ceramic also exhibited excellent charge-discharge characteristics with a high-power density PD=131(1±1%) MW/cm3, a high discharge energy density WD=1.66(1±6%) J/cm3 and a fast discharge rate t0.9<290 ns at 20 kV/mm. The charge-discharge properties maintained good stability within a wide temperature range of 25-125 ℃. These results indicate that 0.71NaNbO3-0.24(Bi0.5Na0.5)TiO3-0.050Bi(Mg0.5Ti0.5)O3 ceramics can be expected to be applied in high-power energy-storage capacitors.
β-FeSi2, an environmentally friendly and high temperature oxidation-resistant thermoelectric material, has potential applications in the field of industrial waste heat recovery. Previous studies have shown that phosphorus (P), an ideal n-type dopant in the silicon (Si) site of β-FeSi2, can easily lead to the formation of a secondary phase, thereby limiting the enhancement of thermoelectric performance. In this study, a series of FeSi2-xPx (x=0, 0.02, 0.04, 0.06) samples were synthesized using an induction melting method, which greatly inhibited the formation of the secondary phase. Then, the influence of P doping on the electrical and thermal transport properties of β-FeSi2 was studied. The results indicate that the solubility limit of P in β-FeSi2 is about 0.04, consistent with earlier theoretical predictions based on the defect formation energy. It is also discovered that P doping enhanced the thermoelectric performance of β-FeSi2, culminating in an optimal figure of merit (ZT) of FeSi1.96P0.04 approximately 0.12 at 850 K, which is much higher than the previous results (ZT about 0.03 at 673 K). However, compared to β-FeSi2 doped with other n-type elements like cobalt (Co) and iridium (Ir), which can achieve carrier concentrations up to 1022 cm-3, P-doped β-FeSi2 exhibits lower carrier concentrations, with the highest of only 1020 cm-3. This results in a weaker electron-phonon scattering effect, which in turn constrains the overall enhancement of the thermoelectric performance. If the carrier concentration could be further increased, the thermoelectric performance of the material is expected to evolve significantly.
High-entropy transition metal nitrides (HENs) are renowned for their thermal stability, corrosion and oxidation resistance, and exceptional mechanical properties, endowing them suitable for use as surface protection films for structural and moving components. However, mapping relationship between broadly adjustable metal components and mechanical properties of HENs is quite complex due to their diversity of HENs components. Taking (NbMoTaW)Nx thin film as the research object, this study prepared (NbMoTaW)Nx (x = 0, 0.59, 0.80, 0.95) thin films with different nitrogen contents by regulating nitrogen flow velocity during the film growth process based on the magnetron sputtering technique. Following analysis of (NbMoTaW)Nx thin films' composition, structure, morphology, and performance, the primary influence mechanism that govern their mechanical properties were explored. The findings revealed that by manipulating nitrogen vacancy, coordinated regulation over the lattice distortions of the nitrogen and metal sublattices was achieved. Due to high degree of the nitrogen and metal sublattice distortions, the (NbMoTaW)N0.80 sample demonstrated the highest hardness and best wear resistance performance. After excluding factors such as electronic structure, residual stress, and grain size that affect mechanical properties, a direct relationship between lattice distortions and mechanical properties of HENs films was confirmed. In summary, this research has unearthed a straightforward strategy for controlling the lattice distortions, offering a novel approach to adjust and optimize the performance of nitride films, and ultimately providing a more effective solution to address the mechanical damage issues that arise in the context of complex service environments.
In recent years, humidity sensors have attracted widespread attention from researchers in fields such as food safety and soil monitoring. Traditional humidity sensors exhibit the advantages of good stability and high sensitivity. However, most humidity sensing systems convert humidity signals into recognizable waveforms through wired connections and large external devices, making it impossible to achieve real-time visual monitoring of changes in humidity information. Currently, direct conversion of humidity information into visible color signals by eyes provides an ideal solution to the aforementioned problems but still lacks intelligent monitor capacity. This study integrated humidity sensors and electrochromic devices (ECDs) to prepare an intelligent visual humidity monitoring system. By converting humidity signals into voltage signals to drive ECDs, stable and reversible color change in the system could be achieved. The ECDs were prepared using tungsten trioxide (WO3) as the negative electrode and zinc foil (Zn) as the positive electrode. Based on the output voltage of the humidity sensor, it achieves transitions between different working states, thereby generating color signals that can be observed by the naked eyes. Electrochemical performance and electrochromic performance of ECDs were tested and characterized by using a UV-visible spectrophotometer and an electrochemical workstation. Subsequently, the performance of the conditioning circuit was analyzed using an oscilloscope and a humidity generation platform. The results show that the intelligent electrochromic humidity indicator has good stability and rapid response performance, where the coloring time and fading time are only 7.5 s and 4.5 s, respectively. After 300 cycles, the optical modulation (ΔT) is basically maintained the same as the initial value, and the retention rate can reach more than 95%. Therefore, this visual humidity indication system which possesses novel design and simple structure has promising broad application in fields such as artificial intelligence and intelligent agriculture.
In order to fulfil the requirement of low area specific resistance and highly stable cathode contact material in planar type solid oxide fuel cell (SOFC) stack assembling, this work investigated the electrical property evolution of LaNi0.6Fe0.4O3 (LNF) with manipulated particle size and its effect on SOFC electrochemical performance. The optimized pre-treatment strategies of LNF were obtained with decreasing ASR, improving SOFC single cell performance and thermal cycling stability. Results show that, the dry-pressed LNF-2 and the high-temperature sintering-pre-treated LNF-3 possess smaller area specific resistances of 0.074 and 0.076 Ω·cm², respectively, more stable particle sizes with shorter conditioning state and faster transfer into steady state after applying 1 A/cm2 current load at 750 ℃. Specifically, the single cell with LNF-2 shows improved peak power density of 0.94 W/cm2 compared to 0.66 W/cm2 of LNF without treatment at 750 ℃. However, it exhibits significant performance degradation during thermal cycling, decreasing by 20%. In contrast, the peak power density of LNF-3 single cell decreases by only 4% after 20 thermal cycles. This work is expected to provide guideline and valued reference for reliable SOFC stack assembling and stable operation.
The investigation of novel materials exhibiting exceptional resistance to calcium-magnesium-aluminum- silicate (CMAS) corrosion at temperatures of 1300 ℃ and above has emerged as a pivotal objective in the advancement of environmental barrier coatings for aircraft engines in recent years. In this study, atmospheric plasma spraying (APS) technology was employed to fabricate YAG(Y3Al5O12)/Al2O3 coatings with eutectic composition, which was acknowledged as a promising material possessing outstanding CMAS corrosion resistance, thereby rendering it suitable for application in environmental barrier coatings. The as-deposited coatings were annealed at 1100, 1300, and 1500 ℃ to obtain different microstructures, and the corrosion resistance as well as mechanism of YAG/Al2O3 coatings against CMAS were investigated by comparing the corrosion results after exposure to CMAS at 1300 ℃. The reaction products between YAG/Al2O3 coatings and CMAS were found to be garnet-structure solid solution, CaAl2Si2O8, and Ca2MgSi2O7. The nearly continuous distribution of the garnet-structure solid solution layer at the reaction interface between YAG/Al2O3 coating annealed at 1100 ℃ and CMAS effectively impedes the diffusion of CMAS corrosion elements. For YAG/Al2O3 coating annealed at 1500 ℃, the increase in grain size and decrease in grain boundaries reduce the dissolution rate of the coating. Both of the above can affect the competitive precipitation of various products by influencing the ion transport rate in the corrosion process, and then improve the CMAS corrosion resistance of the coating. Moreover, heat-treatment temperature can tailor grain size, which influences both dissolution-precipitation rate and competitive precipitation of reaction products during CMAS corrosion. These findings provide guidance for selecting appropriate heat-treatment temperature and offer a novel approach to optimize CMAS corrosion resistance of YAG/Al2O3 coatings through microstructure optimization.
Dielectric thin film, one of the materials of which storage energy in the form of electrostatic field via dielectric polarization, can be widely used in electric equipment, due to their high power density and high charge/ discharge efficiency. Currently, the dielectric energy storage films perform lower energy density and weak temperature stability. In this work, 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2) O3(0.9BT-0.1BMT) ferroelectric thin films were prepared via a Sol-Gel method on Pt/Ti/SiO2/Si substrates and annealed in the range of 700-900 ℃ to realize high energy storage density and wide-temperature stability by introducing BMT. The effect of annealing temperature on phase composition and microstructure was investigated. The results show that denseness of thin films reduce obviously when the annealing temperature is over 750 ℃ and their grain size increases gradually with the increase of treatment temperature. Additionally, the thin films annealed at 750 ℃ display optimized comprehensive feature: room-temperature dielectric constant of ~399, loss tangent of ~5.79% at 1 kHz, and ∆C/C25 ℃ ratio only within ±13.9%. Meanwhile, relaxor value, γ≈1.96 calculated according to Currie-Weiss law consolidates that the thin films possess obvious relaxor characteristics. Results of energy storage shows that the max value of Wrec is ~ 51.9 J/cm3, and the τ0.9 is below 15 μs at pulse charge measure. Moreover, results of temperature stability measurement show Wrec>20 J/cm3, η>65% (1600 kV/cm) and τ0.9<7.2 μs from room temperature to 200 ℃, demonstrating that the film still exists high and stable energy storage under high temperature. Therefore, the ferroelectric thin film 0.9BT-0.1BMT prepared in this work has a promising applications in energy storage under high temperature environment.
Calcium bismuth niobate (CaBi2Nb2O9) is a typical bismuth layered structure piezoelectric material with high Curie temperature (about 943 ℃) and high stability, which is an important candidate functional element for high temperature vibration sensors above 600 ℃. However, its low piezoelectric coefficient and high temperature resistivity seriously limit the signal acquisition of high-temperature piezoelectric vibration sensor. To improve the comprehensive performance, in this work, W/Cr co-doped CaBi2Nb1.975W0.025O9-x%Cr2O3 (CBNW-xCr, 0<x≤0.2) Aurivillius phase ceramics were prepared via conventional solid-state sintering route. The effects of W/Cr co-doping on the crystal structure and electrical properties of CBN piezoelectric ceramics were investigated. The results show that co-doping of W/Cr elements transforms crystal structure of the ceramics from orthorhombic to tetragonal crystal system, enhances distortion of the crystal structure, and significantly improves piezoelectric and insulating properties of the piezoelectric ceramics. When x=0.1, the Curie temperature is 931 ℃, the piezoelectric coefficient is 15.6 pC/N, the resistivity reaches the order of 106 Ω∙cm at 600 ℃, and the dielectric loss is only 0.029, which endows the system an important potential application in the field of high-temperature piezoelectricity.
With the rising of the gas inlet temperature in front of the turbine of aero-engine, ceramic matrix composites (CMCs) have emerged as the preferred matrix material for the new generation of high-temperature components in aero-engine due to their light weight, high strength, oxidation resistance, insensitivity to crack, and excellent temperature durability. However, because of their limited resistance to high temperature water vapor and oxygen erosion, development of thermal spray coating technology for hot-end components of CMCs engines has become an urgent challenge to be overcome. In this paper, based upon changes of material selection strategies and application examples of foreign aero-engines, technical limitations of the employed superalloys + film cooling + thermal barrier coatings (TBCs) for hot-end components of aero-engines were analyzed, and technical advantages of the utilized CMCs + appropriate film cooling + environmental barrier coatings (EBCs) were consolidated. Thermal and environmental barrier coatings (TEBCs) and environmental barrier coatings-abradable sealing coatings (EBCs-ASCs) for CMCs were reviewed on the basis of recent research findings from domestic and oversea scholars. Finally, opportunities and challenges associated with thermal spraying EBCs for higher temperature gas flow were analyzed, and the direction of design and preparation on a certain composition and structure for TEBCs was clarified, among which the focal points of future research endeavors were prospected.
Recently, perovskite solar cells have developed marvelously of which power conversion efficiency (PCE) achieved 26.1%, but the mechanical bending and environmental stability of flexible perovskite solar cells (F-PSCs) have remained major obstacles to their commercialization. In this study, the quality and crystallization of perovskite thin films were enhanced by adding agarose (AG). The interaction mechanism, PCE, mechanical bending and environmental stability of the assembled F-PSCs were investigated. It was found that the perovskite films modified by the optimal concentration of AG (3 mmol/L) exhibited denser and smoother morphology, higher crystallinity and absorbance, the lowest defect state density, and lower charge transfer resistance of 2191 Ω. Based on the optimal photoelectric properties, PCE increased from 15.17% to 17.30%. TiO2 nanoparticles (0.75 mmol/L) were further introduced to form a synergistic interaction with AG (3 mmol/L), which provided a rigid backbone structure, and thus enhanced the mechanical and environmental stability of perovskite layers. After 1500 cycles of bending (3 mm in radius), the AG/TiO2 co-modified F-PSCs maintained 84.73% of initial PCE, much higher than the blank device (9.32%). After 49 d in the air, the optimal F-PSCs still maintained 83.27% of initial PCE, superior than the blank device (62.21%). This work provides possibility for preparing highly efficient and stable F-PSCs.
Silicon sludge, the photovoltaic cutting silicon waste, has become one of the expected raw materials for the key silicon carbon anode materials used in high energy density batteries above 300 Wh·kg-1 due to its low cost, two-dimensional lamellar structure and ultrahigh specific capacity (4200 mAh·g-1). However, silicon sludge requires systematic modification because of its challenges such as complex composition, large particle size, poor electrical conductivity, low stability and poor electrochemical performance. This paper systematically reviews the application status and research progress of silicon sludge in lithium-ion batteries. Firstly, the important effects of metal and non-metal impurities on battery performance are summarized, in which metal impurities are normally removed by magnetic separation and acid pickling, and non-metallic impurities are removed by liquid-liquid extraction and heat treatment. Secondly, detailed elucidation about the initial performance and modification methods of the silicon sludge is provided. Concretely, silicon sludge can be nano-sized to reduce expansion by grinding, etching, electrothermal shock, and alloy dealloying, enhance electrical conductivity through doping the intrinsic silicon and doping the carbon layer on the silicon surface, improve stability through the construction of inert layer, conductive layer and functional group, and obtain mechanical support and protection through silicon-carbon composite. Finally, the challenges, development directions and future prospects of silicon-based anode based on silicon sludge are put forward, aiming to provide a reference for converting silicon sludge into treasure and promote the rapid development of high energy density lithium-ion batteries.
Ferroferric oxide (Fe3O4) magnetic nanoparticles are widely used as passive targeting carriers in gene therapy, due to their simple preparation, targeting under external magnetic field and easy surface grafting. This study synthesized oil phase Fe3O4 nanoparticles with controllable particle sizes in the range from 4 to 9 nm by regulating the accumulation growth time in the solvothermal method. Then, meso-2, 3-dimercaptosuccinic (DMSA) was employed to double exchange oleic acid molecules on its surface to provide good water dispersibility. Finally, Fe3O4-DMSA-PEI magnetic nanoparticles were obtained by grafting branched polyethylenimine (PEI) onto Fe3O4-DMSA surface through amidization reaction. The results demonstrate that the Fe3O4-DMSA-PEI magnetic nanoparticles have a surface Zeta potential of (52.50 ± 1.94) mV, remaining a certain degree of superparamagnetism (14.48 emu/g, 1 emu/g=1 A∙m2/kg). When the mass ratio of Fe3O4-DMSA-PEI magnetic nanoparticles to plasmid DNA is 15 : 1, it can completely block DNA and its loading capacity is as high as 6.67%. The Fe3O4-DMSA-PEI magnetic nanoparticles prepared in this study have a certain gene delivery ability and are expected to be used as gene carriers in the field of gene transfection.
In response to the urgent demand for ultra-high temperature ceramic matrix composites with integrated thermal protection and load-bearing capabilities for high-speed aircrafts, this study prepared stable ceramic slurry from submicron HfC ceramic powder, and utilized the slurry pressure impregnation-assisted precursor infiltration pyrolysis (PIP) process to fabricate C/HfC-SiC composites with uniformly distributed HfC matrix to overcome the shortcomings of the existing reaction-derived HfC precursor, such as high cost, low efficiency, and poor densification effect. The influence of HfC content on the microstructure, mechanical properties, and ablation resistance of composites was investigated. Results showed that the composites had density of 2.20-2.58 g·cm-3 and open porosity of approximately 5% when the actual volume fraction of HfC was in range of 13.1%-20.3%. Utilizing a single layer of carbon cloth to impregnate the ceramic slurry with pressure, HfC particles were able to disperse into the interior of the fiber bundle and distributed relatively evenly in the composites. Increasing the HfC content resulted in reducted fiber content, and decreased mechanical properties of composites. Specifically, when HfC volume fraction was 20.3%, the composites exhibited density, tensile strength and fracture toughness of 2.58 g·cm-3, 147 MPa and 9.3 MPa·m1/2, respectively. Following 60 s of ablation under an oxygen acetylene flame, the composites demonstrated linear ablation rate of 0.0062 mm/s and mass ablation rate of 0.005 g/s. The molten phase HfxSiyOz formed during the ablation process could effectively cover the composites surface and provide protection.
As group ⅣA tellurides, SnTe has the same crystal structure and similar bivalent band structure as PbTe, making it a promising thermoelectric material. However, the main concern of softening at elevated temperature and lower ZT at low temperatures has been hindering its application. Therefore, it is significant to expand the service temperature range of SnTe by improving its average ZT. It has been reported that the thermoelectric performance of SnTe is improved by regulating the power factor and lattice thermal conductivity based on band and lattice engineering. In this study, MgSe alloying strategy was used to prepare a series of Sn1-yPbyTe-x%MgSe(0.01≤y≤0.05, 0≤x≤6) samples by combining melting and Spark Plasma Sintering (SPS) techniques. The results show that alloying MgSe leads to an increase in the band gap, effectively suppressing the bipolar effect of intrinsic SnTe, improving the Seebeck coefficient in the high-temperature range, and reducing lattice thermal conductivity through phonon scattering as well. As a result, ZT at 873 K is improved by 100%. The incorporation of Pb effectively modulates the carrier concentration, successfully suppressing electronic thermal conductivity, and thereby improving average thermoelectric performance of SnTe. Among them, Sn0.96Pb0.04Te-4%MgSe possesses a ZT value of 1.5 at 873 K and an average ZT value of 0.8 at 423-873 K, displaying superior performance compared to literature.
HfxTa1-xC is a very promising candidate for thermal protection materials above 2000 ℃ due to its excellent properties such as high melting point, high hardness, high strength, high electrical conductivity, and high thermal conductivity. However, the rules of its mechanical properties and melting temperature varying with the composition remain elusive. Firstly, the mechanism of the variation of mechanical properties of HfxTa1-xC system solid solutions with its components was systematically investigated from the microscopic point of view of covalent bond strength and valence electron concentration (VEC) based on the special quasirandom structures (SQS) method and first-principles calculations. It revealed that among the five components of solid solutions (i.e., HfC, Hf0.75Ta0.25C, Hf0.5Ta0.5C, Hf0.25Ta0.75C and TaC), the Hf0.25Ta0.75C solid solution possessed the largest elastic modulus and shear modulus. It was mainly attributed to two reasons: (1) the component possessing the strongest covalent bonding strength among the above ternary compounds; (2) the special bonding states between the p-orbital from C and the d-orbital from Hf or Ta strongly resisting the deformation and being completely filled near VEC=8.75 (for Hf0.25Ta0.75C). Secondly, the melting curves of the HfxTa1-xC system solid solutions were calculated using the ab initio molecular dynamics (AIMD)-based molecular dynamics Z method. It showed that there existed indeed the phenomenon for anomalous increase in the melting temprature of HfxTa1-xC system solid solutions, and the highest melting temperature of 4270 K was predicted on Hf0.5Ta0.5C, which was mainly attributed to the synergistic effect of the conformational entropy and the strength of the covalent bond. The results provide a theoretical guidance for the experimental selection of the optimal components of high melting temprature and high mechanical properties for HfxTa1-xC system solid solutions in the thermal barrier coating applications, as well as a reference for the study of other transition metal carbides.
High-entropy boride ceramics (HEBs) consisting of four or more principle metallic elements rapidly develop in recent years due to their outstanding unique physical properties and excellent elevated temperature properties, showing extraordinary promise as potential thermal protection materials applied in extreme environments. However, on the basis of unclear role of each element on their oxidation reaction, HEBs are generally difficult to densify because of their low self-diffusion coefficients and possible sluggish diffusion effect, resulting in limited mechanical properties and low oxidation resistance. In this work, a novel type of HEBs, (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C composites, were prepared by boro/carbothermal reduction method combined with hot-pressing sintering at 1900 ℃. The effect of B4C at the volume fractions ranging from 10% to 30% on the mechanical properties and oxidation resistance of the composites was systematically investigated. Microstructure analyses indicate that homogenously distributed B4C can suppress grain growth of the HEBs matrix and promote toughening mechanisms such as crack deflection and crack branching, consequently resulting in strengthening and toughening composites. When the volume fraction of B4C is 20%, the as-prepared composite shows a high relative density (96.1%) and good mechanical properties with Vickers hardness of (24.6±1.1) GPa, flexural strength of (570.0±27.6) MPa and fracture toughness of (5.58±0.36) MPa·m1/2. In addition, exploration on the oxidation resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C composites at temperatures ranging from 800 ℃ to 1400 ℃ shows that excellent oxidation resistance occurs at the chosen temperatures due to the formation of a dense and continuous oxidation scale, which acts as a barrier layer preventing oxygen inward diffusion. The main compositions of the oxide scale are TiOx, (Zr, Hf)O2 oxides and B2O3 at 800 ℃, while multicomponent oxidation products of (Zr, Hf, Ta)Ox, (Zr, Hf)O2 and TiTaO4 are formed in the oxide scale at 1100 ℃. As the temperature increased to 1400 ℃, thickness of the oxide layer significantly increases due to their volatilization of B2O3, while continuous B2O3 glassy phase plays a crucial role in the oxidation process of HEBs. When the B4C volume fraction not less than 20%, TiTa2O7 and TiO2 which were embedded in B2O3 glass, could effectively insulate inward oxygen and interfacial oxide thickness and enhance oxidation resistance of the composites. In summary, the primary work can be used as a reference to the researches relating to optimizing mechanical properties and oxidation resistance for HEBs.
As a fundamental light source and a good window for atmospheric transmission, the mid-infrared 3 μm lasers have led many promising applications. The rare earth doped crystalline materials, such as erbium doped crystals, are some of the most important routes for generation of the lasers. However, they have an intrinsic shortcoming of self-termination because of their short lifetime of 4I11/2 and longer lifetime of 4I13/2. To eliminate this effect, a high concentration doping method is usually adopted to change the energy transfer process to decrease 4I13/2 lifetime. The efficiency and output power of Er3+-doped crystals were thus limited due to their degraded thermal properties. Trivalent erbium ions are easily clustering in fluoride crystals. Distances among the ions are short and therefore energy transfer processes could be significantly improved in the crystals even doping with low concentrations. Low doping concentrations could also alleviate the thermal effect in laser operations, which enable the erbium doped fluorides to be promising candidates for high power and high efficiency mid-infrared lasers. However, connection of spectral properties and erbium clusters is unknown. Here, the first principles calculation is utilized to model the erbium ion clusters in CaF2, SrF2 and PbF2 crystals, concerning the absorption and photoluminescence properties. The results reveal that spectral properties and structures of the erbium clusters, evolve gradually with matrix crystals. Relationship between spectral properties and optical erbium clusters is determined qualitatively, which could be used to design new erbium doped mid-infrared lasers.
Polymer-derived SiCN ceramics benefiting from advantages of light mass and low coefficient of thermal expansion, have received wide attention in electromagnetic wave absorption field. However, the wave absorptive performance of SiCN ceramics needs to be further improved due to its monomer loss mechanism and insufficient temperature resistance. Enhancing their wave absorptive performance with the aid of multicomponent synergy is a feasible way, but still facing some challenges in preparation and wave absorption. In this work, four types of nanoceramics, SiHfCN, SiHfCN-C, SiHfCN-B, and SiHfCN-N were obtained by single-source modification of polysilazane combining different compounds. The results showed that SiHfCN generated HfO2 and SiO2 for up to 13.5% (in mass) oxygen content in the Hf source, resulting in the minimum reflection loss (RLmin) of only -13.8 dB and the effective absorption bandwidth (EAB) of only 0.42 GHz. Compared to SiHfCN, the co-modification of the Hf-containing polymer with C, B and N sources increased the interface and conductive phases of polymer-derived ceramics, real and imaginary parts of SiHfCN-C, SiHfCN-B, and SiHfCN-N gave rise to 1.4-1.8 and 2.7-3.9 times higher, respectively, with RLmin of -50.6, -57.3 and -63.5 dB, and EAB of 3.53, 3.99 and 4.01 GHz, showing a significant improvement in their wave absorptive properties. The SiHfCN-C inhibited the generation of HfO2 for massive free carbon, which could enhance the conductivity loss. The SiHfCN-B generated B-N and B-C bonds, and precipitated nanorods of HfSiO4 to provide more heterogeneous interfaces, increasing the polarization loss. The SiHfCN-N increased the content of N-C bond due to the introduction of abundant N, enhancing the dipole polarization loss, while the generated carbon nanosheets not only enhanced the conductivity loss but also provided rich interfaces, which improved the impedance matching and amplified the polarization loss, thus exhibiting excellent wave absorptive performance.
Ceramics are one of the earliest synthetic materials in human civilization, which is originated in China. They represent not only the nation's glory but also the testament to the wisdom and innovation of her people. After millennia, ceramics have evolved into a vital material system encompassing both traditional and advanced varieties, with structural ceramics holding a key position. Their high-temperature resistance, corrosion resistance, and superior mechanical properties endow them indispensable in harsh environments where metals and polymers are still in struggle, underscoring their role as a cornerstone of modern technological progress. Ceramic matrix composites have mitigated the brittleness of structural ceramics, garnering global attention for their irreplaceable advantages, particularly in extreme conditions like ultra-high temperatures, intense radiation, and severe corrosion, across sectors such as aerospace, transportation, and advanced nuclear energy.Despite peaking in the 1980s with innovations like ceramic engines and high-performance cutting tools, the development of structural ceramics encountered a slump due to limitations in fabrication techniques and reduced industrial demand. Nevertheless, persistent research efforts have led to significant advancements, broadening application scope of these materials.Invited by Journal of Inorganic Materials, we have curated the special issue of “Frontiers of Structural Ceramics” featuring contributions from eminent domestic research groups, including Northwestern Polytechnical University, Wuhan University of Technology, Harbin Institute of Technology, Nanjing University of Aeronautics and Astronautics, Beihang University, National University of Defense Technology, Jilin University, Northeastern University, Zhengzhou University, Chang’an University, Institute of Metal Research, Chinese Academy of Sciences, and Shanghai Institute of Ceramics, Chinese Academy of Sciences, etc. The special issue is delving into the design, preparation, simulation, performance evaluation, and exploration for damage mechanisms of new structural ceramics.We aim for this publication to deepen researchers’ insights into structural ceramics, provide a platform for exploring recent advancements, and foster the progression of the field. We extend our heartfelt gratitude to the experts who contributed despite their busy schedules, acknowledging their dedication and support that made this publication possible.