Methane is the second greenhouse gas contributing greatly to global warming, about 80 times of CO2. Considering background of global warming and atmospheric methane growth, to catalyze total oxidation of atmospheric methane is of great importance to mitigate greenhouse effects and slow this global warming. However, catalytic oxidation of methane has always been a big challenge due to its high structural stability. In this article, research progress in total oxidation of methane under thermal-, photo- and photothermal-catalysis was reviewed. High temperature in thermal catalysis increases the energy loss and accelerates the deactivation of catalysts speedingly. Therefore, development of catalysts that oxidize methane under moderate temperatures is the main research interests. Photocatalysis provides a way to eliminate methane at ambient conditions with the assistance of solar energy, but the reaction rates are lower than that in thermal catalysis. It is worth mentioning that photothermal catalysis, developed in recent years, can achieve efficiently catalytic total oxidation of methane under mild conditions, showing a high potential application prospect. This article reviews development of three modes of catalysis, analyzes their different reaction mechanisms, advantages and disadvantages under different reaction conditions. Finally, prospects and challenges of this catalytic total oxidation are pointed out, which is expected to provide references for future research on this field.
With rapid development of lithium ion batteries (LIB) and sodium ion batteries (SIB), hard carbon (HC) as new anode material has earned much attention. Besides its rich precursor sources and low cost, HC has higher Li+ storage capacity and better rate performance than graphite for LIB. Furthermore, it is also recognized as the most commercially potential anode material for SIB. However, low initial Coulombic efficiency is a common issue for HC. In addition, it is believed that the specific capacity can be further improved with the clarification of the Li/Na ion storage mechanism. In recent years, many researches on electrochemical mechanism have been conducted with some model assumptions proposed for better understanding the mechanism. This review introduced the structures and preparation approaches of HC as well as its application in LIB and SIB. The advantages, especially in fast charging, coating and other subdivision were discussed, and the different modification strategies such as pore structure design, doping, optimizing interface between electrode and electrolyte were summarized, aiming at the increase of capacity and the improvement of Coulombic efficiency of batteries.
Semiconductor materials are the core of modern technology development and industrial innovation, with high frequency, high pressure, high temperature, high power, and other high properties under severe conditions or super properties needed by the “double carbon” goal, the new silicon carbide (SiC) and gallium nitride (GaN) as representative of the third generation of semiconductor materials gradually into industrial applications. For the third-generation semiconductor, there are several development directions in its packaging interconnection materials, including high-temperature solder, transient liquid phase bonding materials, conductive adhesives, and low-temperature sintered nano-Ag/Cu, of which nano-Cu, due to its excellent thermal conductivity, low-temperature sintering characteristics, and good processability, has become a new scheme for packaging interconnection, with low cost, high reliability, and scalability. Recently, the trend from material research to industrial chain end-use is pronounced. This review firstly introduces the development overview of semiconductor materials and summarizes the categories of third-generation semiconductor packaging interconnect materials. Then, combined with recent research results, it further focuses on the application of nano-Cu low-temperature sintering in electronic fields such as packaging and interconnection, mainly including the impact of particle size and morphology, surface treatment, and sintering process on the impact of nano-Cu sintered body conductivity and shear properties. Finally, it summarizes the current dilemmas and the difficulties, looking forward to the future development. This review provides a reference for the research on low-temperature sintered copper nanoparticles in the field of interconnect materials for the third-generation semiconductor.
MXene is a large family of two-dimensional transition metal carbides, nitrides or carbonitrides. Its characteristics (various compositions, two-dimensional atomic layer structures, metallic electrical conduction, active surfaces, etc.) render MXene unique interactions with electromagnetic waves at different frequencies (visible light, infrared, terahertz, microwave, etc.), deriving a variety of electromagnetic functional applications. In the infrared range, MXene has a wide range of infrared radiation properties, and its active surface endows tunable infrared absorption. These features have attracted researchers’ interest in exploring infrared properties of MXene and the corresponding applications in recent years. In this perspective, the intrinsic infrared characteristics and manipulation strategies of different MXenes are systematically summarized, and the research progress of representative infrared applications are briefly introduced, including infrared identification/camouflage, surface plasmon, photothermal conversion, and infrared photodetection. Particularly, the contribution and mechanism of MXene in these applications are discussed. Finally, the outlook for infrared functional applications with MXenes is proposed.
In response to the evolving landscape of high-speed aircraft, characterized by an expansive airspace, prolonged flight durations, and increased velocities, the thermal protection requirements for key structures such as the nose cone, leading edge, and engine combustion chamber have become more exacting. This necessitates a concerted focus on the development of high-performance thermal protection materials capable of withstanding extreme conditions. Ultra-high temperature ceramic composites have emerged as noteworthy candidates, showcasing exceptional oxidation and ablation resistance. Despite their commendable properties, the inherent brittleness of these composites poses a significant obstacle to widespread engineering applications. To address this limitation, there is a growing emphasis on toughening through structural modulation. Simultaneously, the imperative to enhance aircraft payload capacity underscores the demand for lightweight ultra-high temperature ceramic composites. This paper provides a systematic overview of the major research advances made in recent years on ultra-high temperature ceramic composites, including preparation methods such as pressure sintering, slurry infiltration, precursor impregnation and pyrolysis, reactive melt infiltration, chemical vapor infiltration/deposition, and “solid-liquid” combination process, toughening methods such as particles, whiskers, soft-phase materials, short-cut fibers, and continuous fibers, as well as oxidation ablation resistant properities and mechanisms, and lightweighting design. The relationship between the components, microstructures and properties of ultra-high temperature ceramic composites is discussed in depth, and the current challenges as well as the future development trends of ultra-high temperature ceramic composites are presented.
With the rise of the third-generation wide-bandgap semiconductors represented by SiC and GaN, power electronic devices are developing rapidly towards high output power and high power density, putting forward higher performance requirements on ceramic substrate materials used for power module packaging. The conventional Al2O3 and AlN ceramics are inadequate for the new generation of power module packaging applications due to low thermal conductivity or poor mechanical properties. In comparison, the newly developed Si3N4 ceramics have become the most potential insulating heat dissipation substrate materials due to its excellent mechanical properties and high thermal conductivity. In recent years, researchers have made a series of breakthroughs in the preparation of high strength and high thermal conductivity Si3N4 ceramics by screening effective sintering additive systems and optimizing the sintering processes. Meanwhile, as the advancement of the engineering application of coppered Si3N4 ceramic substrate, the evaluation of its mechanical, thermal, and electrical properties has become a research hotspot. Starting from the factors affecting thermal conductivity of Si3N4 ceramics, this article reviews the domestic and international research work focused on sintering aids selection and sintering processes improvement to enhance the thermal conductivity of Si3N4 ceramics. In addition, the latest progress in the dielectric breakdown strength of Si3N4 ceramic substrates and the evaluation of properties after being coppered are also systematically summarized and introduced. Based on above progresses and faced challengies, the future development direction of high strength and high thermal conductivity Si3N4 ceramic substrates is prospected.
Inspired by gene scissor concept in biological genetic engineering, chemical scissors, as important research tools, play an important role in the study of structure editing and application of materials. We aim to review the research progress of chemical scissors in structural editing and applications of materials. First of all, we introduce the basic concept and mechanism. Chemical scissors strategy refers to a methodology for material editing through which the main crystal structure is preserved but targeted atoms or structural units are knocked out, replaced, repaired or reconstructed in order to realize special functionality. Subsequently, the specific applications of chemical scissors in materials structure editing are discussed in depth, including the methods and functional designs for precise structure modulation of materials by chemical shearing, modification, synthesis, as well as etching and intercalation. Finally, the future research direction of chemical scissors in the field of material structure editing is envisioned, including developing new chemical scissors that are more intelligent and efficient, exploring more innovative strategies for material structure editing, understanding the underlying chemical mechanism, and further expanding the applicability of chemical scissors. Overall, we summarize the research progress and potential of material structural editing, which provides important theoretical and experimental support for further exploring and developing the application of chemical scissors in the field of materials.
Ceramic-based porous structures not only inherit the excellent properties of dense ceramic materials such as high-temperature resistance, electrical insulation, and chemical stability, but also have unique advantages similar to porous structures, including low density, high specific surface area, and low thermal conductivity. They show great potential in various applications, such as thermal insulation, bone tissue engineering, filtration and pollutants removal, and electronic components. However, there still exist some challenges for shaping complex geometries on the macro- scale and adjusting pore morphologies on the micro- and nano-scale through the conventional preparation strategy of ceramic-based porous structures. In recent decades, researchers have been devoting themselves to developing novel manufacturing techniques for ceramic-based porous structures. The direct-ink-writing 3D printing, as one of the representative additive manufacturing technologies, has become a current research hotspot, rapidly developing a series of mature theories and innovative methodologies for fabricating porous structures. In this work, the conventional strategies and additive manufacturing strategies for obtaining porous structures were firstly summarized. The direct-write assembly processes of pore structures were further introduced in detail, mainly including pseudoplastic ink formulation, solidification strategy, drying, and post-treatment. Meanwhile, the feasibility of direct-ink-writing 3D printing technologies combined with conventional manufacturing strategies in constructing ceramic-based hierarchical pore structures was analyzed emphatically. The new perspectives, developments, and discoveries of direct-ink-writing 3D printing technologies were further summarized in the field of manufacturing complex ceramic-based porous structures. In addition, the developments and challenges in the future were prospected according to the actual application status.
Developing novel low-dimensional materials for terahertz electromagnetic shielding and absorbing applications represents a critical research frontier. Their unique electrical, mechanical, and electromagnetic responses hold great potential in enabling more efficient solutions for electromagnetic shielding and absorbing. Two-dimensional transition metal carbides, nitrides, and carbonitride MXenes have already demonstrated excellent electromagnetic shielding and absorbing performance in the low-frequency spectrum. MXenes possess high conductivity, low density, and high flexibility, which are advantageous for future portability and integration of terahertz devices and systems. However, practical implementation of MXene-based terahertz electromagnetic shielding and absorption materials faces challenges in adhesion stability, environmental resilience, and high-temperature tolerance, hindering their suitability for aerospace and future next generation communication applications. Moreover, in terahertz frequency band, lacking more comprehensive and reliable electromagnetic scattering and absorbing measurement methods limits the development of THz shielding and absorbing materials. Extensive research efforts have targeted on these limitations, exploring fundamental architectural and theoretical aspects of prevalent electromagnetic materials. This review specifically highlights the terahertz electromagnetic shielding and absorption characteristics inherent in various MXenes and their compositions, such as Ti3C2Tx, Mo2Ti2C3Tx, Mo2TiC2Tx, Nb4C3Tx, and Nb2CTx. Additionally, this review envisages the forthcoming challenges and prospects of MXenes as a pivotal electromagnetic shielding and absorbing material within the terahertz frequency band.
Smart windows have gained tremendous attention because of their ability to dynamically modulate the solar radiation to minimize energy consumption and improve indoor living comfort. Vanadium dioxide (VO2) is one of the most attractive thermochromic materials for energy-saving smart windows due to its reversible metal-to-insulator transition at a critical temperature of ~68 ℃ and accompanying great change of its optical transmittance. However, VO2 itself has a couple of significant limitations as a smart window material: high phase transition temperature (τc), low luminous transmittance (Tlum) and insufficient solar energy modulation ability (ΔTsol). Several methods have been used to grow VO2 thin films with improved properties to meet the specific requirements for smart windows applications. The phase transition temperature (τc) should be reduced to near room temperature, in the meantime luminous transmittance (Tlum) and solar energy modulation ability (ΔTsol) should be high enough for the modulation of indoor temperature self-adapted to seasons and climate. The most common way to reduce τc is by doping. To enhance Tlum and ΔTsol, multilayer structures and/or nanocomposite film have been widely adopted. Chemical vapor deposition (CVD) is a promising technique to produce high quality and highly uniform VO2 thin film with different morphologies in large scale and at low costs. In this paper, various CVD techniques, such as atmospheric pressure chemical vapor deposition (APCVD), aerosol-assisted chemical vapor deposition (AACVD), low-pressure chemical vapor deposition (LPCVD), metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD), are examined with respect to their advantages for VO2 deposition, film quality and the strategies for film quality improvement. Finally, challenges and opportunities for further research and development of VO2 thermochromic films using PECVD technique are emphasized.
With improvement in service temperature of thermal structural components for the new generation hypersonic aircraft, higher requirements are put forward for the phase stability and ablation resistance of the thermal protection coatings (TPCs). Carrying out high-entropy design for traditional transition metal oxide ZrO2 and HfO2 coatings, solid-phase reaction and supersonic atmosphere plasma spraying (SAPS) were applied to prepare (Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ (M1R3O), (Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ (M2R3O), (Hf0.25Zr0.25Sm0.167Er0.167Y0.167)O2-δ (M3R3O) high-entropy oxide (HEO) coatings. The effects of rare earth content on phase structure evolution, phase stability and ablative resistance of HEO coatings were investigated. M2R3O coating and M3R3O coating possessed excellent phase stability and ablation resistance, which maintained stable phase structure after ablation by oxygen-acetylene flame with heat flux density of 2.38-2.40 MW/m2, without decomposition of solid solution and precipitation of rare earth components. Mass ablation rate and linear ablation rate of M2R3O coating after cyclic ablation for 180 s are 0.01 mg/s and -1.16 μm/s, respectively. Compared with M1R3O coating (0.09 mg/s, -1.34 μm/s) and M3R3O coating (0.02 mg/s, -4.51 μm/s), the reductions of ablation rate are 88.9%, 13.4%, respectively, and 50.0%, 74.3% for M2R3O coatings, respectively, presenting the best ablation resistance. M2R3O coating exhibits excellent ablation resistance due to its high melting point (>2200 ℃) and low thermal conductivity ((1.07±0.09) W/(m·K)), which effectively protects the internal SiC transition layer and C/C composites from oxidation damage, avoiding interface cracking caused by the formation of SiO2 phase.
MAX phase ceramics, with their mixed covalent-metallic-ionic atomic bonds, can uniquely combine the advantages of both metals and ceramics, offering a series of distinctive characteristics. The particular layered atomic structure further endows them with decent fracture toughness, good damping capacity, and self-lubricating property. As such, MAX phase ceramics are more appealing to serve as reinforcements for metal matrix composites (MMCs) than conventional ceramic materials. Here, we foused on the development. To date, fabrication of MMCs reinforced by MAX phase ceramics still involves the use of stir casting, powder metallurgy, and melt infiltration techniques. The obtained composites made by different methods may display distinct differences in their structural characteristics, show notable enhancement in strength, hardness, and stiffness as compared to their metal matrices, and exhibit good wear resistance, high electrical conductivity and remarkable arc erosion resistance. Moreover, ultrafine MAX phase platelets can be preferentially oriented and aligned, e.g., by using vacuum filtration or ice templating techniques. By infiltrating metal melt into partially sintered porous ceramic scaffolds, bioinspired composites with nacre-like architectures can be obtained, thereby affording further improvement in strength and fracture toughness. Sufficient combinations of mechanical and functional properties enable the MMCs reinforced by MAX phase ceramics promising for a variety of applications, such as load-bearing structures, electrical contact materials. These composites can offer enhanced strength, stiffness, and wear resistance, making them ideal candidates for these applications.
Brain-inspired neuromorphic computing refers to simulation of the structure and functionality of the human brain via the integration of electronic or photonic devices. Artificial synapses are the most abundant computation element in the brain-inspired system. Memristors are considered to be ideal devices for artificial synapse applications because of their high scalability and low power consumption. Based on Ohm’s law and Kirchhoff’s law, memristor crossbar arrays can perform parallel multiply-accumulate operations in situ, leading to analogue computing with greatly improved speed and energy efficiency. Oxides are most widely used in memristors due to the ease of fabrication and high compatibility with CMOS processes. This work reviews the research progress of oxide memristors for brain-inspired computing, mainly focusing on their resistance switching mechanisms, device structures and performances. These devices fall into three categories: electrical memristors, memristors controlled via both electrical and optical stimuli, and all-optically controlled memristors. The working mechanisms of electrical memristors are commonly related to microstructure change and Joule heat that are detrimental to device stability. The device performance can be improved by optimizing device structure and material composition. Tuning the device conductance with optical signals can avoid microstructure change and Joule heat as well as reducing energy consumption, thus making it possible to address the stability problem. In addition, optically controlled memristors can directly response to external light stimulus enabling integrated sensing-computing-memoring within single devices, which are expected to be used for developing next-generation vision sensors. Hence, the realization of all-optically controlled memristors opens a new window for research and applications of memristors.
Continuous silicon carbide fiber reinforced silicon carbide composite (SiCf/SiC) is a critical structural material for the development of next-generation aircraft engines. The interfacial property is one of the important factors determining the material mechanical properties. Therefore, this study characterized the interfacial mechanical properties of domestic third-generation 2.5D SiCf/SiC and investigated its relationship with tensile properties. The residual stress of the 2.5D SiCf/SiC constituents and interfacial sliding stress (IFSS) were quantitatively analyzed by hysteresis characteristics during the cyclic tension loading/unloading test. Statistical distributions of the in-situ fiber strength $({{\sigma }_{\text{fu}}})$ were obtained based on the fracture mirror radius of pull-out fibers. Interfacial shear strength (ISS) and interfacial debonding energy (Gi) were obtained through the push-in method. Results show that combination of macroscopic and microscopic methods can comprehensively describe the interfacial mechanical performance of 2.5D SiCf/SiC from crack initiation to final debonding. The IFSS, ISS, and Gi of 2.5D SiCf/SiC are 56 MPa, (28 ± 5) MPa, and (2.7 ± 0.6) J/m², respectively. Values of ISS and Gi indicate weak interface bonding, causing it susceptible to cracking under shear stress, while the large IFSS suggests that relative fiber sliding is inhibited after interface debonding, hindering fiber pull-out. The obtained interfacial properties can predict the proportional limit stress (${{\sigma }_{\text{PLS}}}$) accurately according to the ACK model. Based on the interfacial properties and the in-situ fiber strength (${{\sigma }_{\text{fu}}}$), the tensile strength of 2.5D SiCf/SiC is predicted to be higher than the experimental value, which is related to the interfacial radial compressive residual stress and residual tensile stress endured by the fiber.
The development of high-speed flight technology has put forward an urgent demand for high- performance thermal structure materials. High-entropy carbides (HECs) ceramics are a fast-emerging family of materials that combine the excellent properties of high-entropy ceramics and ultra-high temperature ceramics. HECs have a broad application prospect in extreme service environments, which has received extensive attention from scholars in recent years. Compared with traditional ultra-high temperature carbides containing only one or two transition metal elements, HECs have a greater potential for development because of their improved comprehensive performance and greater designability of composition and properties. After successive exploration of HECs in recent years, researchers have obtained many interesting results, developed a variety of preparation methods, and gained comprehensive understanding of microstructure and properties. The basic theories and the laws on HECs obtained from experimental process are reviewed in this paper. Preparation methods of HECs including powders, blocks, coatings and films, as well as fiber-reinforced HECs-based composites are summarized. Research progress on the properties of HECs, such as the mechanical properties, thermal properties, and especially the oxidation and ablation resistance related to high-temperature applications, is reviewed and discussed. Finally, the scientific issues that need to be further explored in this area are emphasized, and the prospects are proposed.
Nowadays, artificial intelligence (AI) is playing an increasingly important role in human society. Running AI algorithms represented by deep learning places great demands on computational power of hardware. However, with Moore's Law approaching physical limitations, the traditional Von Neumann computing architecture cannot meet the urgent demand for promoting hardware computational power. The brain-inspired neuromorphic computing (NC) employing an integrated processing-memory architecture is expected to provide an important hardware basis for developing novel AI technologies with low energy consumption and high computational power. Under this conception, artificial neurons and synapses, as the core components of NC systems, have become a research hotspot. This paper aims to provide a comprehensive review on the development of oxide neuron devices. Firstly, several mathematical models of neurons are described. Then, recent progress of Hodgkin-Huxley neurons, leaky integrate-and-fire neurons and oscillatory neurons based on oxide electronic devices is introduced in detail. The effects of device structures and working mechanisms on neuronal performance are systematically analyzed. Next, the hardware implementation of spiking neural networks and oscillatory neural networks based on oxide artificial neurons is demonstrated. Finally, the challenges of oxide neuron devices, arrays and networks, as well as prospect for their applications are pointed out.
Transparent ceramic materials have excellent strength, hardness and optical properties, which have important application prospect in light-weight transparent protective armor. However, the preparation of transparent ceramic components with large protection area and high transmittance properties is the main challenge to achieve application. In this work, large-size yttrium aluminum garnet (Y3Al5O12, abbreviated as YAG) transparent ceramics with low deformation and excellent optical quality were fabricated by reactive sintering in vacuum using domestic high-purity Al2O3 and Y2O3 powders as starting materials, and the key technologies including dry pressing, calcining, high-temperature vacuum sintering and optical performance were broken through. In addition, as the upgrading of molding and sintering equipment, the dimension of YAG transparent ceramic was enlarged to 1040 mm×810 mm×15 mm, laying a substantial foundation for future applications.
MXene material has gained popularity among scientists since its discovery in 2011. It has shown great potential in various fields such as energy storage, catalysis, environment, wave absorption, biotherapy, and high-performance composite materials. A series of special perspectives have been organized to provide an overview of the latest research progress and challenges in MXene material science. The invited experts have shared their research highlights and discussed existing problems and future directions.
Synthesis is the foundation of MXene research, with nearly all studies employing chemical methods that use fluoride etchants to transform MAX phases into MXenes. Strategies like Lewis acid molten salt etching and “chemical scissors” for structural editing offer new perspectives for customized synthesis. MXene possesses key physicochemical properties crucial for electronic applications, significantly impacting the study of electronic devices. MXene materials have broad application prospects in flexible photodetectors, solar cells, electronic devices, and energy applications. Moreover, MXene’s metallic conductivity and accordion-like structure make it useful for pressure sensors and electromagnetic shielding. MXene is also a hot topic in the field of energy storage, such as the latest developments in anodes, cathodes, and electrolytes/separators for zinc-ion batteries. Journal of Inorganic Materials expresses gratitude to the invited experts and reviewers for their contributions and looks forward to more updates on MXene research findings.
In summary, MXene materials have shown great potential due to their unique properties and have made significant breakthroughs in various fields. However, there are still many challenges to be addressed, such as the environmental stability and packaging technology of MXene materials. With continuous efforts from researchers, it is expected that more exciting findings and breakthroughs will be achieved in the future.
Advanced ink printing techniques, such as printing and coating, have overcome the limitations of traditional manufacturing methods, allowing for rapid prototyping of films and electronic devices with sophisticated structures and specific functions. These techniques hold enormous potential in wearable smart identification, energy storage, electromagnetic shielding and absorption, touch display, and so on. The key to printing advanced energy and electronic devices lies in the development of cutting-edge functional inks and their corresponding printing technologies. MXene, a family of two-dimensional compounds composed of transition metal carbides, nitrides, or carbonitrides, was discovered in 2011. MXene exhibits remarkable physical and chemical properties, including high conductivity, pronounced hydrophilicity, and diverse surface chemistry, which has garnered significant attention within the research community and made it particularly suitable as inks in printing applications. Conducting research on the printing behavior and mechanisms of MXene inks is crucial not only for achieving high-precision patterns but also for establishing a solid foundation for manufacturing techniques that can precisely create multiscale, multimaterial and multifunctional films, and electronic devices. This article begins with a brief discussion of MXene flakes’ synthesis and colloidal stability, followed by a detailed examination of its rheological characteristics, printable ink formulation, and printing methods. Additional, special attention is given to the latest advances of MXene ink in energy, health, and sensing applications. The perspective concludes with a summary of current research challenges and future directions in this area, offering new perspectives and insights for researchers.
The question of what qualities excellent medical bioceramics must possess to ensure satisfactory prognosis for bone healing and reconstruction remains a topic of great interest in both clinical and biomaterial sciences. Our team has been dedicated to researching medical bioceramics since the 1990s, involving basic scientific research, applied translational research, and clinical trials. Consequently, we have amassed a wealth of research and implementation experience. In this article, we aim to explore the subject of “Functional Bioadaptability in Medical Bioceramics”, specifically focusing on calcium phosphate-based materials. We summarized how to effectively combine bioadaptability with design and manufacturing of medical bioceramics in the background of orthopedic clinical application, with the following aspects of structural adaptability, degradative adaptability, mechanical adaptability, and application adaptability. Hopefully, some suggestions put forward can ultimately provide valuable insights and recommendations for the design, production, supervision, and application of the upcoming medical bioceramics.
NiFeOH/CoP/NF composite electrode was fabricated by constructing a metal hydroxide layer on the surface of cobalt phosphide via hydrothermal, phosphating, and electrodeposition methods. The electrolytic water splitting to hydrogen performance by as-prepared electrode was investigated in 1.0 mol/L KOH medium. NiFeOH/CoP/NF composite electrode exhibited excellent water electrolysis performance, and the required overpotentials for HER and OER at 100 mA/cm2 current density were 141 and 372 mV, respectively. When NiFeOH/CoP/NF electrode served as both cathode and anode for water splitting, only 1.61 V voltage was required to reach current density of 10 mA/cm2. Because NiFeOH protection layer enhanced the electrocatalytic activity and stability of CoP for water splitting, NiFeOH/CoP/NF composite electrode exhibited high stability during the galvanostatic electrolysis in the HER and OER, and its activity could maintain 60000 s without significant performance degradation. The photovoltaic-electrolytic water cell constructed with two NiFeOH/CoP/NF electrodes and GaAs solar cell showed 18.0% efficiency of solar to hydrogen under 100 mW/cm2 simulated solar irradiation and worked stably for 200 h.
Bioceramic scaffolds with excellent osteogenesis ability and degradation rate exhibit great potential in bone tissue engineering. Akermanite (Ca2MgSi2O7) has attracted much attention due to its good mechanical property, biodegradability and enhanced bone repair ability. Here, akermanite (Ca2MgSi2O7) scaffolds were fabricated by an extrusion-type 3D printing at room temperature and sintering under an inert atmosphere using printing slurry composed of a silicon resin as polymer precursor, and CaCO3 and MgO as active fillers. Furthermore, the differences in structure, compressive strength, in vitro degradation, and biological properties among akermanite, larnite (Ca2SiO4) and forsterite (Mg2SiO4) scaffolds were investigated. The results showed that the akermanite scaffold is similar to those of larnite and forsterite in 3D porous structure, and its compressive strength and degradation rate were between those of the larnite and forsterite scaffolds, but it showed a greater ability to stimulate osteogenic gene expression of rabbit bone marrow mesenchymal stem cells (rBMSCs) than both larnite and forsterite scaffolds. Hence, such 3D printed akermanite scaffold possesses great potential for bone tissue engineering.
Heteroepitaxy provides an effective path for the synthesis of diamond wafers. After more than 20 years of development, the diamond nucleation and growth technology on iridium substrates has enabled to prepare crystals with a maximum diameter of 3.5 inches, which opens a door to application diamond as ultimate semiconductor in the future chip industry. However, a series of problems that occur on heterogeneous substrates, such as surface nucleation, bias process window, and diamond epitaxial growth, need to overcome from the perspective of growth thermodynamics. In this study, aiming at the key issue how diamond can achieve epitaxial nucleation and growth in chemical vapor deposition atmosphere, a simulation study was carried out on the nucleation and growth process of diamond at the atomic scale based on the first-principle calculation. The results show that the adsorption of C atoms on the surface of the Ir substrate is more stable than that on the bulk phase, which indicates that diamond nucleation can only occur on the substrate surface. The number of C atoms of sp3 hybridization in the amorphous hydrogenated carbon layer increases firstly and then decreases with the increase of ion kinetic energy under ion bombardment, confirming the existence of the ion kinetic energy or bias voltage window in the high-density nucleation of diamond. The interfacial binding energy is the lowest (about -0.58 eV/C) when diamond is epitaxially grown along the Ir substrate, meaning that the interface binding energy is the decisive thermodynamic factor for the epitaxial growth. In conclusion, this study clarifies the thermodynamic mechanism of single crystal diamond epitaxial growth under the bias-assisted ion bombardment, and points out a great significant guidance for the growth of diamond and other carbon based semiconductors.
Molten salt electrolysis is the key technology for dry reprocessing of spent fuel in the nuclear energy industry. High-temperature molten salt can cause severe corrosion to crucible materials used for spent fuel, so the selection of the crucible material with good resistance to high temperature and corrosion is crucial for the development of the dry reprocessing method. Si3N4 is considered as a promising candidate for the crucible used in dry reprocessing, primarily due to its excellent high-temperature thermal and mechanical properties. However, its resistance to high-temperature molten salts and water vapor has not been fully investigated. In this work, the corrosion behavior of Si3N4 in LiCl-KCl and NaCl-2CsCl molten salt under Ar atmosphere and water vapor (5%H2O-10%O2-85%Ar) was investigated. The results show that in argon atmosphere, Si3N4 undergoes slight grain boundary corrosion in LiCl-KCl molten salt, while NaCl-2CsCl molten salt presents weak corrosion on Si3N4. In 5%H2O-10%O2-85%Ar water vapor environment, LiCl-KCl molten salt prefers to attack the grain boundary phase. Si3N4 shows serious corrosion degradation in the NaCl-2CsCl molten salt compared with the corrosion level in argon atmosphere. The water vapor environment significantly promotes the corrosion of Si3N4 in the molten salt environment, while the grain boundary phase is the most susceptible site for the corrosion of Si3N4. In addition, no direct correlation is found between the wettability and corrosion resistance of LiCl-KCl and NaCl-2CsCl molten salts. Results of this work elucidate the mechanism of high-temperature molten salt-water vapor-induced degradation of Si3N4, offering guidelines for the selection of crucibles in the dry reprocessing of spent fuel.
Recently, organic-inorganic hybrid perovskite solar cells have demonstrated a broad commercial prospect due to their high photoelectric conversion efficiency (PCE) and low fabricating costs. During the past decades, the highest reported PCE of small-area (<1 cm2) perovskite solar cells (PSCs) rose to 26.10%, and those of large-area (1-10 cm2), mini-module level (10-800 cm2) and module level (>800 cm2) PSCs increased to 24.35%, 22.40% and 18.60%, respectively. The performance of PSCs decreases dramatically with the area increasing due to limitation of the deposition method and the poor quality of large-area perovskite films. Spin-coating method is not suitable for actual industrial production, while the scalable deposition methods including blade-coating and slot-die coating still face the difficulty of precisely controlling nucleation and crystallization of the perovskite films with large area. This review summarized preparation methods of large-area perovskite films, and discussed the film-forming mechanism and strategies for high-quality perovskite films. Finally, relevant outlooks on technologies and applications for large-area PSCs with high performances and stabilities were analyzed. This review is expected to provide insights on the research of large-area PSCs with high performance.
BiFeO3 is a highly promising lead-free ferroelectric material, surpassing most conventional ferroelectric materials in terms of the polarization and Curie temperature, offering a pathway for potential applications at elevated temperatures. Nevertheless, challenges arise due to strong clamping effect of substrate, large coercive fields, and high leakage currents, causing BiFeO3 films difficult to be polarized. The implementation of self-polarization presents a viable solution. Herein, we prepared BiFeO3, up-graded films (which transition from BiFeO3 to Bi0.80Ca0.20FeO2.90 from the substrate to the film surface), and down-graded films (which transition from Bi0.80Ca0.20FeO2.90 to BiFeO3 from the substrate to the film surface) using the Sol-Gel method on Pt(111)/Ti/SiO2/Si substrates. After directional distribution of defects within the film being carefully modulated, the BiFeO3 films are self-polarization when induced by build-in electric field. Piezoresponse force microscopy show that the up-graded and down-graded self-polarization behavior can be modulated by gradient direction of Ca in BiFeO3 thin films. Moreover, diode-like current-voltage signature verifies the composition gradient-induced self-polarization. The X-ray photoelectron spectroscopy results indicate that the polarization orientation mechanism may arise from the internal electric field attributed to the gradient distribution of oxygen vacancy. This work provides a new strategy to achieve self-polarization in ferroelectric thin films, as well potential novel application in improving the performance of photovoltaic or photosensitive devices as assisted by internal field via self-aligned ferroelectric polarization.
TiO2 nanomaterials are widely used photocatalysts due to high photocatalytic activity, good chemical stability, low cost, and nontoxicity. However, its lower photon utilization efficiency is still limited by larger bandgap width and higher recombination rate between photon and hole. In this study, two-dimensional TiO2 nanosheets were synthesized via microetching, which were then inserted by ruthenium atoms to form an efficient photocatalyst Ru@TiO2 with sandwich structure. The surface morphology, electronic structure, photoelectric properties, and photocatalytic degradation performance of tetracycline hydrochloride of Ru@TiO2 sandwich structure were investigated using different measurements. Results indicated that the material’s photoresponse range extended from UV to visible- near-infrared regions, improving photon absorption and carrier separation efficiency while enhancing photocatalytic activity. Under simulated sunlight irradiation (AM 1.5 G, 100 mW·cm-2) for 80 min, sandwich structured Ru@TiO2 efficient photocatalyst exhibited superior degradation performance on tetracycline hydrochloride with a degradation efficiency up to 91.91%. This work offers an effective way for the construction of efficient TiO2 based photocatalysts.
Rechargeable zinc-ion batteries (ZIBs) have captured significant attention as promising solutions for large-scale energy storage. They offer advantages such as low cost, inherent safety, high specific energy, and eco-friendliness. Though numerous breakthroughs have been achieved in the development of cathodes, anodes and electrolytes, ZIBs are still far behind for practical application due to the lack of advanced materials. In the realm of ZIBs, two-dimensional (2D) MXenes have emerged as a fascinating candidate, leveraging their exceptional properties such as high richness, customizability, and unique physiochemical attributes. This review aims to provide a concise overview of advancements in MXene application for ZIBs, encompassing multiple synthesis routes, properties, morphological and structural characteristics, as well as various chemistries employed. Furthermore, detailed elucidation is provided on the recent progress in MXene-based cathodes, anodes, and electrolytes/separators for ZIBs, indicating the great potential of MXenes for achieving high-performance ZIBs. Strategies to enhance the performance of MXene-based ZIBs are also highlighted, including ion-intercalation adjustment, surface modification, heteroatoms doping, and layer spacing widening. Lastly, the review discusses the current challenges and future prospects for MXene-based ZIBs, paving the way for further research and development in this exciting field.
In recent years, pressure sensors have been widely applied in the fields of smart wearable textile, health detection, and electronic skin. The emergence of the two-dimensional nanomaterial MXene has brought a brand-new breakthrough for pressure sensing. Ti3C2Tx is the most popular studied MXene in the field of pressure sensing and shows good mechanical, electrical properties, excellent hydrophilicity, and extensive modifiability, enabling it an ideal material for pressure sensing. Hence, researchers have conducted a lot of explorations and studies on design and application of MXene in pressure sensors in recent years. Herein, the preparation technologies and antioxidant methods are summarized. Design of MXene-based microstructures is also introduced, including aerogels/porous structural materials, hydrogels, flexible substrates, and films, which are beneficial to improve the response range, sensitivity, and flexibility of pressure sensors, and promote the rapid development of pressure sensors. The mechanisms of MXene pressure sensors are further broached, including piezoresistive, capacitive, piezoelectric, triboelectric, battery typed and nanofluidic. MXene has been applied in a wide range of sensors for various mechanisms due to its excellent characteristics. Finally, the chance and challenge in the synthesis, properties, and pressure sensing performance of MXene materials are prospected.
Hysteresis effect greatly impacted performance and stability of perovskite solar cells. Ion migration and the resulting accumulation of interface ions were widely recognized as the most important origins. In this study, upconversion luminescent nanoparticles (UCNP) were used to modify the interface of the electron transport layer/perovskite active layer and the intrinsic perovskite active layer, and the effects of UCNP on the morphology, structure, spectral/optoelectronic properties, and ion migration kinetics of perovskite were systematically explored. The results indicated that the device with UCNP modified perovskite active layer has the best photoelectric conversion efficiency (PCE, 16.27%) and significantly improves the hysteresis factor (HF, 0.05). Furthermore, circuit switching transient optoelectronic technology was employed to investigate the ion migration kinetics without interference from photo-generated carriers, revealing the dual role of UCNP in suppressing ion migration and accumulation during the optoelectronic conversion process of perovskite solar cells. On the one hand, UCNP formed barrier layers that hinder ion accumulation. On the other hand, UCNP infiltrated into grain boundaries of perovskite phase during annealing, hindering ion migration and reducing the recovery voltage from 0.43 V to 0.28 V. The mechanism of carriers and ions interaction was explained based on the polarization-induced trap state model to declare the process of UCNP suppressing the hysteresis of perovskite photovoltaic devices. This work provides effective solution for regulating the hysteresis of perovskite solar cells.
Titanium orthopaedic implants present a risk of infection and require the development of antibacterial, but still biocompatible and non-resistant coatings. Magnesium oxide (MgO) coatings were prepared on micro-arc oxidized titanium by electrophoretic deposition for 15, 30, 45, or 60 s. Nano-sized MgO particles agglomerated to form homogeneous coatings with surface coverage increasing with the duration of deposition. The four groups produced antibacterial rates of 1%, 69%, 83%, and 84% after co-cultured with S. aureus for 6 h, and 81%, 86%, 89%, and 98% after co-cultured for 24 h. Electron and fluorescence microscopies showed decreasing density of bacterial cells and proportion of living cells with increasing time of deposition. Mouse osteoblasts seeded on the four groups had survival rates of 108%, 89%, 53%, and 27% on day 1, and 139%, 117%, 112%, and 66% on day 5. Proportion of dead cells on the coated samples increased with increasing time of deposition but less than 5% on day 5. These results indicate that MgO coatings prepared by electrophoretic deposition for 30 s is reasonable in vitro antibacterial activities and cytocompatibility.
The development trend of high voltage, high current and high-power density of power semiconductor devices has raised the requirement for the heat dissipation capability and reliability of ceramic substrates in devices. Silicon nitride (Si3N4) ceramics, known for their high thermal conductivity and excellent mechanical properties, have emerged as a preferred thermal dissipation substrate material for high-power electronic devices. However, there is a significant gap between experimental and theoretical values of thermal conductivity in Si3N4 ceramics. The long period of heat preservation during preparation leads to excessive grain growth, compromising mechanical properties and increasing costs, which hinders large-scale application. Lattice oxygen defects act as main factor limiting thermal conductivity of Si3N4 ceramics. Now, researchers are exploring ways to promote removal of lattice oxygen and full development of bimodal morphology formation of Si3N4, by selecting non-oxide sintering additives to reduce the oxygen content in the system, adjusting the composition and properties of the liquid phase, constructing a “nitrogen-rich-oxygen-deficient” liquid phase, and regulating the dissolution and precipitation process in the liquid phase. These efforts aim to the synergistic optimization of thermal conductivity-mechanical properties of Si3N4 ceramics. Based on the elemental classification, we review the non-oxide sintering additives developed at domestic and abroad, explain how they improve the thermal conductivity of Si3N4 ceramics from liquid-phase modulation and microscopic morphology control, analyze the grain development and morphology evolution laws, and discusse the mechanism of lattice oxygen removal. The out look on future development of high thermal conductivity Si3N4 ceramics is also prospected.
To expand the utilization of iron tailings, four kinds of porous ceramics were prepared by foam gel-casting with pressureless sintering, foam gel-casting with reactive sintering, and mold forming with reactive sintering using fine-grained high-silicon iron tailings, iron tailings + graphite, and iron tailings + graphite + silicon carbide as raw materials, respectively. DSC-TG and XRD analysis was applied to investigate the sintering process of iron tailings and the carbothermal-reduction reaction between iron tailings and graphite. The four porous ceramics’ porosities, compressive strengths, and thermal conductivities were further analyzed. The results show that the porous ceramics made only from iron tailings possesses high porosity (87.2%), compressive strength (1.37 MPa), and low thermal conductivity (0.036 W/(m·K)), meeting the requirement of thermal insulation material. Silicon carbide porous ceramics with improved thermal conductivity but a slight sacrifice of strength can be fabricated through carbothermal reduction between iron tailings and graphite. Moreover, the compressive strength of silicon carbide porous ceramics can be significantly increased by adding some silicon carbide to the raw materials. The silicon carbide porous ceramics achieved high porosity of 91.6%, high compressive strength of 1.19 MPa and thermal conductivity of 0.31 W/(m·K), which can be a guarantee of a carrier for composite phase change materials or light thermal conductive materials. Compared with foam gel-casting, the mold-forming process can significantly improve the thermal conductivity (1.15 W/(m·K)) of silicon carbide porous ceramics and greatly reduce the cost of raw materials and manufacturing, which is profitable for industrialization.
Silicon carbide ceramics are important engineering materials, but their application is limited by the inherent brittleness. Two-dimensional graphene, with its excellent properties, can be used as a second phase to improve the performance of silicon carbide ceramics. However, due to poor dispersion of graphene in the ceramic matrix, it is a challenge to fully exploit the modifying effect of graphene in composite materials. To address these challenges, SiC-based ceramic materials incorporating graphene nanosheets (GNPs) were synthesized using ceramic organic precursor polycarbosilane and industrial expandable graphite as starting materials. The precursor intercalation technique was employed to fabricate SiC/GNPs ceramic composites with GNPs volume fraction of 1%, 3%, and 5%. The GNPs were uniformly arranged in an array-like parallel fashion in the SiC ceramic matrix, showing excellent orientation. With the GNPs content increasing, the spacing between GNPs within the array decreased, indicating tunable microstructural topology. The addition of GNPs greatly enhanced the fracture toughness of SiC ceramics. When the GNPs content was 3%, the relative density of the samples reached 98.5%, the bending strength reached 445 MPa, and the fracture toughness (KIC value) peaked at 5.67 MPa·m1/2, surpassing pure SiC ceramics by 40%, which was primarily attributed to crack deflection and bridging induced by the GNPs. However, further increase in GNPs content led to a decrease in fracture toughness to 4.37 MPa·m1/2. These SiC-based ceramic composites with a graphene array have potential application in design and development of novel “structure-function integration” SiC-based ceramic devices.
Preparation of highly efficient and stable photocatalysts is crucial for the development of photocatalysis technology. In this study, the method of ultrasonic-assisted deposition and low-temperature calcination was used to prepare MoS2/g-C3N4 S-type heterojunction photocatalyst (MGCD). Effects of the phase structure, micro-morphology, optical absorption performance, X-ray photoelectron spectroscopy, electrochemical AC impedance, and photocurrent of the materials on the photocatalytic activity were comprehensively investigated. The results show that, after ultrasonic-assisted deposition-calcination treatment, MoS2 microspheres were broken, dispersed and combined on the surface of g-C3N4 nanosheets, and formed a kind of heterojunction. Under visible light, the degradation rate of 5%MGCD (with 5% MoS2 addition) for Rhodamine B (RhB) reached 99% in 20 min, and still reach 95.2% when the sample was reused for 5 times, showing good photocatalytic performance and stability. Further analysis from the point of view of the formation of built-in electric field shows that the band bending caused by built-in electric field, coupled with MoS2 and g-C3N4 in heterojunction, can effectively guide the directional migration of carriers, which can efficiently promote the separation of photogenerated carriers, thus improving the efficiency of photocatalytic reaction. Free radical capture experiment of heterojunction photocatalyst reveals that O2- and ·OH are the main active species in the catalytic degradation of RhB, followed by H+.
Chemodynamic therapy (CDT) uses endogenous H2O2 of tumor cells to react with Fenton catalysts to generate highly toxic hydroxyl radical (•OH), thereby killing cancer cells. However, the insufficient endogenous H2O2 and low transport efficiency of nanoparticles result in unsatisfactory anticancer efficacy. Here, we successfully synthesized a Cu2+ doped mesoporous silica nanoparticles (Cu-MSN) with excellent dispersity and small size. After loaded with doxorubicin (DOX) and ascorbate (AA), Cu-MSN was coated with folic acid (FA), dimethyl maleic anhydride (DMMA) modified chitosan (FA-CS-DMMA) and carboxymethyl chitosan (CMC) to obtain a pH responsive targeted nanocatalyst FCDC@Cu-MSN@DA. SEM images showed that particle size of FCDC@Cu-MSN@DA was about 100 nm. After 48 h in vitro, cumulative amount of Cu2+ release reached 80% and DOX release was about 57.3% in the acidic environment. After oxidation of AA, the produced exogenous H2O2 induced Cu2+ to catalytic the Fenton-like reaction, which enhanced the therapeutic effect of tumor chemodynamic therapy (CDT). Cell experiments in vitro demonstrated that FCDC@Cu-MSN@DA exhibited excellent anticancer ability in the combination of CDT and chemotherapy. This multifunctional nanocatalyst has great potential application in cancer therapy in the future.
As group ⅣA tellurides, SnTe has the same crystal structure and similar bivalent band structure as PbTe, making it a promising thermoelectric material. However, the main concern of softening at elevated temperature and lower ZT at low temperatures has been hindering its application. Therefore, it is significant to expand the service temperature range of SnTe by improving its average ZT. It has been reported that the thermoelectric performance of SnTe is improved by regulating the power factor and lattice thermal conductivity based on band and lattice engineering. In this study, MgSe alloying strategy was used to prepare a series of Sn1-yPbyTe-x%MgSe(0.01≤y≤0.05, 0≤x≤6) samples by combining melting and Spark Plasma Sintering (SPS) techniques. The results show that alloying MgSe leads to an increase in the band gap, effectively suppressing the bipolar effect of intrinsic SnTe, improving the Seebeck coefficient in the high-temperature range, and reducing lattice thermal conductivity through phonon scattering as well. As a result, ZT at 873 K is improved by 100%. The incorporation of Pb effectively modulates the carrier concentration, successfully suppressing electronic thermal conductivity, and thereby improving average thermoelectric performance of SnTe. Among them, Sn0.96Pb0.04Te-4%MgSe possesses a ZT value of 1.5 at 873 K and an average ZT value of 0.8 at 423-873 K, displaying superior performance compared to literature.
In order to fulfil the requirement of low area specific resistance and highly stable cathode contact material in planar type solid oxide fuel cell (SOFC) stack assembling, this work investigated the electrical property evolution of LaNi0.6Fe0.4O3 (LNF) with manipulated particle size and its effect on SOFC electrochemical performance. The optimized pre-treatment strategies of LNF were obtained with decreasing ASR, improving SOFC single cell performance and thermal cycling stability. Results show that, the dry-pressed LNF-2 and the high-temperature sintering-pre-treated LNF-3 possess smaller area specific resistances of 0.074 and 0.076 Ω·cm², respectively, more stable particle sizes with shorter conditioning state and faster transfer into steady state after applying 1 A/cm2 current load at 750 ℃. Specifically, the single cell with LNF-2 shows improved peak power density of 0.94 W/cm2 compared to 0.66 W/cm2 of LNF without treatment at 750 ℃. However, it exhibits significant performance degradation during thermal cycling, decreasing by 20%. In contrast, the peak power density of LNF-3 single cell decreases by only 4% after 20 thermal cycles. This work is expected to provide guideline and valued reference for reliable SOFC stack assembling and stable operation.
Continuous SiC fiber-reinforced SiC (SiCf/SiC) composites possess high specific strength, high specific modulus, high-temperature resistance, and radiation resistance, making them suitable for applications in hot-end parts of advanced aero-engines and claddings of nuclear reactors. SiCf/SiC composites are composed of fibers, interfaces and matrix, endowing them with complex multi-scale structural characteristics. These composites are designed to serve in harsh environment, and their damage and failure process are complex. A profound understanding and accurate analysis of damage and failure mechanisms of SiCf/SiC composites under service environments are of great significance for the optimized design of materials and the reliable service of components. Traditional “post-mortem analysis” methods are incapable of acquiring data during the damage and failure process of materials under complex service environments. Therefore, there is an urgent need to develop in-situ characterization techniques for composites under high-temperature service environments. This paper reviewed the principles, advantages, and limitations of in-situ monitoring methods based on scanning electron microscopy, digital image correlation, micro computational tomography, acoustic emission, and electrical resistance. It focused on the latest research progress in the high-temperature mechanical characterization of SiCf/SiC composites using various in-situ monitoring methods and combinations thereof. It summarized the challenges in the in-situ monitoring technologies of SiCf/SiC composites under high-temperature environments and provided a preliminary outlook on the future development directions, such as the combined use of multiple in-situ monitoring techniques, new detection technologies like terahertz radiation, and in-situ damage monitoring methods for complex components.
Oxide ceramics, known for their outstanding strength and excellent oxidation and corrosion resistance, are prime candidates for high-temperature structural materials of aero-engines. These materials hold vast potential for application in high-end equipment fields of the aerospace industry. Compared with traditional ceramic preparation methods, laser additive manufacturing (LAM) can directly realize the integrated forming from raw powders to high-performance components in one step. LAM stands out for its high forming efficiency and good flexibility, enabling rapid production of large complex structural components with high performance and high precision. Recently, research on LAM for melt-grown oxide ceramics, which involves liquid-solid phase transition, has surged as a hot topic. This paper begins by outlining the basic principles of LAM technology, with an emphasis on the process characteristics of two typical LAM technologies: selective laser melting and laser directed energy deposition. On this basis, the paper summarizes the microstructure characteristics of several different oxide ceramics prepared by LAM and examines how process parameters influence these microstructures. The differences in mechanical properties of laser additive manufactured oxide ceramics with different systems are also summarized. Finally, the existing problems in this field are sorted out and analyzed, and the future development trend is prospected.