Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (8): 887-894.DOI: 10.15541/jim20240065
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
HUANG Jianfeng1,2(), LIANG Ruihong1, ZHOU Zhiyong1(
)
Received:
2024-02-05
Revised:
2024-02-28
Published:
2024-08-20
Online:
2024-03-30
Contact:
ZHOU Zhiyong, professor. E-mail: zyzhou@mail.sic.ac.cnAbout author:
HUANG Jianfeng (1999-), male, Master candidate. E-mail: huangjianfeng21@mails.ucas.ac.cn
Supported by:
CLC Number:
HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics[J]. Journal of Inorganic Materials, 2024, 39(8): 887-894.
Fig. 2 Rietveld refinement results of XRD patterns for CBNW-xCr piezoelectric ceramics (a) x=0.01; (b) x=0.05; (c) x=0.1; (d) x=0.2; (e) Variation of cell parameters with doping concentration
Fig. 4 Variations of dielectric constant and dielectric loss with temperature for CBNW-xCr piezoelectric ceramics (a) Dielectric constant vs temperature; (b) Curie temperature at 1 MHz; (c) Dielectric loss vs temperature; (d) Rate of change of dielectric loss
Fig. 6 Piezoelectric coefficient (d33) of CBNW-xCr piezoelectric ceramics (a) Variation of d33 with doping concentration; (b) Variation of d33 with annealing temperature
Fig. 7 Crystal structure distortion of CBNW-xCr piezoelectric ceramics (a) Schematic of the crystal structure; (b) Tilt and rotation angles of NbO6 octahedra; (c) Trends of d33 and tilt angle with doping concentration
Fig. 8 Ferroelectric hysteresis loops of CBNW-xCr piezoelectric ceramics (a) Ferroelectric hysteresis loops; (b) Trends of Pr and Pmax-Pr with doping concentration
[1] | ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018, 98(6): 552. |
[2] | ZHOU Z Y, CHEN T, DONG X L. Research progress of perovskite layer structured piezoelectric ceramics with super high Curie temperature. Journal of Inorganic Materials, 2018, 33(3): 251. |
[3] | JIANG X N, KIM K, ZHANG S J, et al. High-temperature piezoelectric sensing. Sensors, 2013, 14(1): 144. |
[4] | ZHANG F Q, LI Y X. Recent progress on bismuth layer-structured ferroelectrics. Journal of Inorganic Materials, 2014, 29(5): 449. |
[5] | 王天资, 周志勇, 李伟, 等. 高温压电振动传感器及陶瓷材料研究应用进展. 传感器与微系统, 2020, 39(6): 1. |
[6] | XIE X C, ZHOU Z Y, LIANG R H, et al. Superior piezoelectricity in bismuth titanate-based lead-free high-temperature piezoceramics via domain engineering. Advanced Electronic Materials, 2022, 8(7): 2101266. |
[7] | SUBBARAO E C. A family of ferroelectric bismuth compounds. Journal of Physics and Chemistry of Solids, 1962, 23(6): 665. |
[8] | SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structure and ferroelectric properties of ABi2Ta2O9(A=Ca, Sr, and Ba). Physical Review B, 2000, 61(10): 6559. |
[9] | LONG C B, WANG B, REN W, et al. Significantly enhanced electrical properties in CaBi2Nb2O9-based high-temperature piezoelectric ceramics. Applied Physics Letters, 2020, 117(3): 032902. |
[10] | YAN H X, ZHANG H T, UBIC R, et al. A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Advanced Materials, 2005, 17(10): 1261. |
[11] | CHEN H, ZHAI J. Enhancing piezoelectric performance of CaBi2Nb2O9 ceramics through microstructure control. Journal of Electronic Materials, 2012, 41(8): 2238. |
[12] | LI Y G, ZHOU Z Y, LIANG R H, et al. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics. Journal of the European Ceramic Society, 2022, 42(6): 2772. |
[13] | HOU Q C, YANG B, MA C, et al. Tailoring structure and piezoelectric properties of CaBi2Nb2O9 ceramics by W6+-doping. Ceramics International, 2022, 48(12): 16677. |
[14] | WU Y J, CHEN J, YUAN J, et al. Structure refinements and the influences of A-site vacancies on properties of Na0.5Bi2.5Nb2O9- based high temperature piezoceramics. Journal of Applied Physics, 2016, 120(19): 194103. |
[15] | LIU G, WANG D, WU C, et al. A realization of excellent piezoelectricity and good thermal stability in CaBi2Nb2O9: pseudo phase boundary. Journal of the American Ceramic Society, 2018, 102(4): 1537. |
[16] | SUBBARAO E C. Ferroelectricity in Bi4Ti3O12 and its solid solutions. Physical Review, 1961, 122(3): 804. |
[17] | BLAKE S M, FALCONER M J, MCCREEDY M, et al. Cation in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A=Ba, Sr, Ca). Journal of Materials Chemistry, 1997, 7(8): 1609. |
[18] | XING X, CAO F, PENG Z, et al. Electrical properties and sintering characteristics of zirconium doped CaBi2Nb2O9 ceramics. Ceramics International, 2018, 44(14): 17326. |
[19] | ZAKHAROV N, KLYUEV V A, TOPOROV Y P. Phase transitions and electric characteristics of ferroelectric Ca2Nb2O7and Sr2Nb2O7. Zhurnal Fizicheskoj Khimii, 1999, 73(5): 823. |
[20] | ZHANG X D, YAN H X, MICHAEL J R, et al. Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. Journal of the American Ceramic Society, 2008, 91(9): 2928. |
[21] | ISUPOV V A. Two types of ABi2B2O9 layered perovskite-like ferroelectrics. Inorganic Materials, 2007, 43(9): 976. |
[22] | FRIT B, MERCURIO J P. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. Journal of Alloys and Compounds, 1992, 188: 27. |
[23] | ZENG X X, YANG J C, ZUO L, et al. Li/Ce/La multidoping on crystal structure and electric properties of CaBi2Nb2O9 piezoceramics. Journal of Inorganic Materials, 2019, 34(4): 379. |
[24] | CHEN J N, WANG Q, LU H T, et al. Enhanced electrical properties and conduction mechanism of A-site rare-earth Nd-substituted CaBi2Nb2O9. Journal of Physics D: Applied Physics, 2022, 55(31): 315301. |
[25] | XING X H, CAO F, PENG Z, et al. The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Current Applied Physics, 2018, 18(10): 1149. |
[26] | XIE X C, ZHOU Z Y, CHEN T, et al. Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceramics International, 2019, 45(5): 5425. |
[27] | WANG X P, WU J G, XIAO D Q, et al. New potassium-sodium niobate ceramics with a giant d33. ACS Applied Materials & Interfaces, 2014, 6(9): 6177. |
[28] | WITHERS R L, THOMPSON J G, RAE A D. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. Journal of Solid State Chemistry, 1991, 94(2): 404. |
[29] | QIN C, SHEN Z Y, LUO W Q, et al. Effect of excess Bi on the structure and electrical properties of CaBi2Nb2O9 ultrahigh temperature piezoceramics. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7801. |
[30] | SIMÕES A Z, RICCARDI C S, CAVALCANTE L S, et al. Impact of oxygen atmosphere on piezoelectric properties of CaBi2Nb2O9 thin films. Acta Materialia, 2007, 55(14): 4707. |
[31] | LI F, ZHANG S J, XU Z, et al. The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals. Advanced Functional Materials, 2017, 27(18): 1700310. |
[32] | PICININ A, LENTE M H, EIRAS J A, et al. Theoretical and experimental investigations of polarization switching in ferroelectric materials. Physical Review B, 2004, 69(6): 064117. |
[1] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[2] | SONG Yunxia, HAN Yinglei, YAN Tao, LUO Min. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl [J]. Journal of Inorganic Materials, 2023, 38(7): 778-784. |
[3] | ZHAO Wei, XU Yang, WAN Yingjie, CAI Tianxun, MU Jinxiao, HUANG Fuqiang. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance [J]. Journal of Inorganic Materials, 2022, 37(2): 140-151. |
[4] | PENG Fan, ZENG Yi. Method of Crystal Structure Identification by Using Kikuchi Diffraction Patterns [J]. Journal of Inorganic Materials, 2021, 36(11): 1193-1198. |
[5] | LI Shufang,ZHAO Shuang,ZHOU Xiao,LI Manrong. Crystal Structures, Optical, and Magnetic Properties of Zn3-xMnxTeO6 [J]. Journal of Inorganic Materials, 2020, 35(8): 895-901. |
[6] | LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5 [J]. Journal of Inorganic Materials, 2020, 35(7): 834-838. |
[7] | HUANG Chong,ZHAO Wei,WANG Dong,BU Kejun,WANG Sishun,HUANG Fuqiang. Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2 [J]. Journal of Inorganic Materials, 2020, 35(4): 505-510. |
[8] | ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 721-726. |
[9] | Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2019, 34(4): 379-386. |
[10] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
[11] | ZHOU Xin, MA Lei, LIU Tao, GUO Yong-Bin, WANG Dao, DONG Pei-Lin. Crystal Structure and Magnetic Property of Si3N4/FePd/Si3N4 Thin Films [J]. Journal of Inorganic Materials, 2018, 33(8): 909-913. |
[12] | XIA Biao-Jun, ZHOU Zhi-Yong, DONG Xian-Lin. Effect of Excessive Nb2O5 on the Sintering and Electrical Property of Lead Metaniobate Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2018, 33(11): 1248-1252. |
[13] | MENG Fan-Bin, MA Xiao-Fan, ZHANG Wei, WU Guang-Heng, ZHANG Yu-Jie. Structure and Magnetic Property of Fe and Mn Doped Spinel Co2MnO4 [J]. Journal of Inorganic Materials, 2017, 32(6): 609-614. |
[14] | WANG Qing-Qing, SHI Jian, LI Huan-Ying, CHEN Xiao-Feng, PAN Shang-Ke, BIAN Jian-Jiang, REN Guo-Hao. Optical and Scintillation Properties of Cs2LiYCl6:Ce Crystal [J]. Journal of Inorganic Materials, 2017, 32(2): 175-179. |
[15] | DAN Meng, ZHANG Qian, ZHONG Yun-Qian, ZHOU Ying. Preparation of MnS with Different Crystal Phases for Photocatalytic H2 Production from H2S [J]. Journal of Inorganic Materials, 2017, 32(12): 1308-1314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||