Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (2): 113-127.DOI: 10.15541/jim20240302
• REVIEW • Next Articles
SUN Shujuan1(), ZHENG Nannan2, PAN Haokun2, MA Meng1, CHEN Jun1, HUANG Xiubing2(
)
Received:
2024-06-21
Revised:
2024-09-12
Published:
2025-02-20
Online:
2024-09-27
Contact:
HUANG Xiubing, professor. E-mail: xiubinghuang@ustb.edu.cnAbout author:
SUN Shujuan (1983-), associate professor. E-mail: sunshujuan@hebut.edu.cn
CLC Number:
SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts[J]. Journal of Inorganic Materials, 2025, 40(2): 113-127.
Fig. 3 Research on OER mechanism for Ir1/Ni LDH-T and Ir1/Ni LDH-V[37] (a, b) Schematic structure models of Ir1/Ni LDH-T (a) and Ir1/Ni LDH-V (b) from top views; (c, d) Charge density differences of Ir atoms on Ir1/Ni LDH-T (c) and Ir1/Ni LDH-V (d) with yellow and cyan areas indicating electron accumulation and depletion, respectively; (e, f) Projected density of states (PDOS) in Ir1/Ni LDH-T (e) and Ir1/Ni LDH-V (f); (g) Free energy diagram of Ir1/Ni LDH-T and Ir1/Ni LDH-V with Ir as the active site; (h, i) Schematic OER pathways for Ir1/Ni LDH-T (h) and Ir1/Ni LDH-V (i) with pink, red, gray, and purple spheres representing H, O, Ni, and Ir atoms, respectively, and blue circles indicating reaction intermediates. Colorful figures are available on website
Fig. 4 High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) images of (a-c) Pt SACs-ZIF-8-NC (30 s), (d-f) Pt subclusters-ZIF-8-NC (1 min), and (g-i) Pt NPs-ZIF-8-NC (5 min)[57] Colorful figures are available on website
Fig. 6 Schematic preparation of SACs samples using frozen precursor solutions (experimental groups) and using liquid precursor solutions (control groups)[63]
Fig. 10 Schematic diagrams of high-temperature pyrolysis preparative method[115⇓-117] (a) Preparation of Fe SACs/GO[115]; (b) N-doped carbon atomization of Pd NPs/TiO2[116]; (c) Single atomic catalyst using atomic Co site and polarization carrier[117]. Colorful figures are available on website
Fig. 11 Schematic illustration for synthesis processes of SACs[120] (a) Top-down synthesis strategy; (b) Bottom-up synthesis strategy; (c) Crosslinking and self-assembly based on graphene quantum dots (GQDs). Colorful figures are available on website
[1] | HUMAYUN M, ISRAR M, KHAN A, et al. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications. Nano Energy, 2023, 113: 108570. |
[2] | WANG L, WEI J, LI Y, et al. A state-of-the-art review on heterogeneous catalysts-mediated activation of peracetic acid for micropollutants degradation: classification of reaction pathways, mechanisms, influencing factors and DFT calculation. Chem. Eng. J., 2023, 477: 147051. |
[3] | WANG H, WANG S, SONG Y, et al. Boosting electrocatalytic ethylene epoxidation by single atom modulation. Angew. Chem. Int. Ed., 2024, 63(20): e202402950. |
[4] |
QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem., 2011, 3(8): 634.
DOI PMID |
[5] |
LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev., 2020, 120(2): 623.
DOI PMID |
[6] |
GATES B C, KATZ A, LIU J. Nested metal catalysts: metal atoms and clusters stabilized by confinement with accessibility on supports. Precis. Chem., 2023, 1(1): 3.
DOI PMID |
[7] | HE J, ZHAO Z H, LI J, et al. Hydrogenation of olefinic bonds in nitrile butadiene rubber on single-atom Pd1/CeO2-x catalysts with ultrahigh mass activity and stability. Chem. Eng. J., 2024, 487: 150427. |
[8] | DONG F, MENG Y, LING W, et al. Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs. Appl. Catal. B-Environ. Energy, 2024, 346: 123779. |
[9] |
ZHANG Z, WANG J, GE X, et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc., 2023, 145(41): 22836.
DOI PMID |
[10] | ZHENG Y, YANG Q, WANG S, et al. Adjacent MnOx clusters enhance the hydroformylation activity of rhodium single-atom catalysts. Appl. Catal. B-Environ. Energy, 2024, 350: 123923. |
[11] | MIAO J, MA Y, WANG X, et al. Efficiently selective C(O-)-C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst. Appl. Catal. B-Environ., 2023, 336: 122937. |
[12] | PEI Z, ZHANG H, WU Z P, et al. Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. Sci. Adv., 2023, 9(26): eadh1320. |
[13] | XING L, GAO H, HAI G, et al. Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. A, 2020, 8(6): 3203. |
[14] | TANG B, ZHOU Y, JI Q, et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth., 2024, 3: 878. |
[15] | YU Y, ZHU Z, HUANG H. Surface engineered single-atom systems for energy conversion. Adv. Mater., 2024, 36(16): 2311148. |
[16] | XU H, ZHAO Y, WANG Q, et al. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev., 2022, 451: 214261. |
[17] |
HAN B, GUO Y, HUANG Y, et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed., 2020, 59(29): 11824.
DOI PMID |
[18] | CAO F, NI W, ZHAO Q, et al. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes. Appl. Catal. B-Environ. Energy, 2024, 346: 123762. |
[19] | LIU X, ZHOU Y, LIN J, et al. Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed., 2024, 63(34): e202406650. |
[20] | LI H, PAN F, QIN C, et al. Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy Mater., 2023, 13(28): 2301378. |
[21] | GLOAG L, SOMERVILLE S V, GOODING J J, et al. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater., 2024, 9(3): 173. |
[22] | YAN Q Q, WU D X, CHU S Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun., 2019, 10(1): 4977. |
[23] | ZHANG H, WU F, HUANG R, et al. Symmetry evolution induced 2D Pt single atom catalyst with high density for alkaline hydrogen oxidation. Adv. Mater., 2024, 36(31): 2404672. |
[24] | LI Z, WANG D, WU Y, et al. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Nat. Sci. Rev., 2018, 5(5): 673. |
[25] | WANG X, KANG Z, WANG D, et al. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy, 2024, 121: 109268. |
[26] |
LIN X, HU W, XU J, et al. Alleviating OH blockage on the catalyst surface by the puncture effect of single-atom sites to boost alkaline water electrolysis. J. Am. Chem. Soc., 2024, 146(7): 4883.
DOI PMID |
[27] | SAPTAL V B, RUTA V, BAJADA M A, et al. Single-atom catalysis in organic synthesis. Angew. Chem. Int. Ed., 2023, 62(34): e202219306. |
[28] | XI J, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater., 2021, 31(12): 2008318. |
[29] | WANG P, JIN Z L, CHEN N G, et al. Theoretical investigation of Mo doped α-MnO2 electrocatalytic oxygen evolution reaction. J. Inorg. Mater., 2022, 37(5): 541. |
[30] | SUN D, CHEN Y, YU X, et al. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen. Chem. Eng. J., 2023, 462: 142084. |
[31] | DING J, HUANG L, JI G, et al. Modification of catalytic properties of hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane. ACS Catal., 2021, 11(9): 5347. |
[32] | YIN S, LI Y, YANG J, et al. Unveiling low temperature assembly of dense Fe-N4 active sites via hydrogenation in advanced oxygen reduction catalysts. Angew. Chem. Int. Ed., 2024, 63(23): e202404766. |
[33] | DU P, QI R, ZHANG Y, et al. Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252. |
[34] | SUN L, CAO L, SU Y, et al. Ru1/FeOx single-atom catalyst with dual active sites for water gas shift reaction without methanation. Appl. Catal. B-Environ., 2022, 318: 121841. |
[35] | SWAIN S, ALTAEE A, SAXENA M, et al. A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges. Coord. Chem. Rev., 2022, 470: 214710. |
[36] | GUO R, GUO C, BI Z, et al. The single atom Fe loaded catalytic membrane for effective peroxymonosulfate activation and pollution degradation. Appl. Catal. B-Environ. Energy, 2024, 356: 124243. |
[37] |
WEI J, TANG H, SHENG L, et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun., 2024, 15(1): 559.
DOI PMID |
[38] | MEESE A F, NAPIER C, KIM D J, et al. Underpotential deposition of 3D transition metals: versatile electrosynthesis of single-atom catalysts on oxidized carbon supports. Adv. Mater., 2024, 36(19): 2311341. |
[39] | ZHAO X, HE D, XIA B Y, et al. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv. Mater., 2023, 35(14): 2210703. |
[40] | LV Y K, WANG K, SUN W Y, et al. A universal electrochemical synthetic strategy for the direct assembly of single-atom catalysts. Adv. Sci., 2023, 10(34): 2304656. |
[41] | YAO R, SUN K, ZHANG K, et al. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun., 2024, 15(1): 2218. |
[42] | XU H, XIN G, HU W, et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B-Environ., 2023, 339: 123157. |
[43] |
ZHANG Z, FENG C, LIU C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun., 2020, 11(1): 1215.
DOI PMID |
[44] | QI K, CUI X, GU L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun., 2019, 10(1): 5231. |
[45] |
XUAN N, CHEN J, SHI J, et al. Single-atom electroplating on two dimensional materials. Chem. Mater., 2019, 31(2): 429.
DOI |
[46] |
JIANG K, LIU B, LUO M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun., 2019, 10(1): 1743.
DOI PMID |
[47] | ZHOU J, LIU Y, YANG D R, et al. Predicting the stability and loading for electrochemical preparation of single-atom catalysts. ACS Catal., 2023, 13(1): 79. |
[48] | XU J, LI R, XU C Q, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B-Environ., 2021, 289: 120028. |
[49] | SHANKAR A, MARIMUTHU S, MADURAIVEERAN G. High-valent iron single-atom catalysts for improved overall water splitting via a reduced energy barrier and stabilization of the active center. J. Mater. Chem. A, 2024, 12(1): 121. |
[50] | FONSECA J, LU J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal., 2021, 11(12): 7018. |
[51] | CAO L, LU J. Atomic-scale engineering of metal-oxide interfaces for advanced catalysis using atomic layer deposition. Catal. Sci. Technol., 2020, 10(9): 2695. |
[52] | GONG T, QIN L, ZHANG W, et al. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: genesis and evolution of nanoparticles and tuning the particle size. J. Phys. Chem. C, 2015, 119(21): 11544. |
[53] | SUN S, ZHANG G, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep., 2013, 3(1): 1775. |
[54] |
CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7(1): 13638.
DOI PMID |
[55] | WANG X, JIN B, JIN Y, et al. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS Appl. Nano Mater., 2020, 3(3): 2867. |
[56] | HE X, DING Y, HUANG Z, et al. Engineering a self-grown TiO2/Ti-MOF heterojunction with selectively anchored high- density Pt single-atomic cocatalysts for efficient visible-light- driven hydrogen evolution. Angew. Chem. Int. Ed., 2023, 62(25): e202217439. |
[57] | SONG Z, ZHU Y N, LIU H, et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small, 2020, 16(43): 2003096. |
[58] | SHI X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles. ACS Catal., 2020, 10(5): 3495. |
[59] | JUSSILA T, PHILIP A, TRIPATHI T, et al. Atomic layer deposition of magnetic thin films: basic processes, engineering efforts, and road forward. Appl. Phys. Rev., 2023, 10(4): 041313. |
[60] | AFTABUZZAMAN M, AHMED M S, MATYJASZEWSKI K, et al. Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions. Chem. Eng. J., 2022, 446: 137249. |
[61] | JEONG H, KWON O, KIM B S, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal., 2020, 3(4): 368. |
[62] | CHEN Z, LI X, ZHAO J, et al. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed., 2023, 62(39): e202308686. |
[63] | XU R, XU B, YOU X, et al. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A, 2023, 11(21): 11202. |
[64] | HUANG Y, XIONG J, ZOU Z, et al. Emerging strategies for the synthesis of correlated single atom catalysts. Adv. Mater., 2025, 37(2): 2312182. |
[65] | ZHOU S, SHANG L, ZHAO Y, et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater., 2019, 31(18): 1900509. |
[66] | LIU H, TIAN L, ZHANG Z, et al. Atomic-level asymmetric tuning of the Co1-N3P1 catalyst for highly efficient n-alkylation of amines with alcohols. J. Am. Chem. Soc., 2024, 146(29): 20518. |
[67] | XU H, XI S, LI J, et al. Chemical design and synthesis of superior single-atom electrocatalysts via in situ polymerization. J. Mater. Chem. A, 2020, 8(34): 17683. |
[68] | LI X, LIU J, WU J, et al. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd-N3 single atoms and fully exposed Pd clusters. ACS Catal., 2024, 14(4): 2369. |
[69] | LI R, WANG D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater., 2022, 12(9): 2103564. |
[70] | LI L, YUAN K, CHEN Y. Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res., 2022, 3(6): 584. |
[71] | YU B, CHENG L, DAI S, et al. Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Adv. Sci., 2023, 10(26): 2302143. |
[72] | FU J, DONG J, SI R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal., 2021, 11(4): 1952. |
[73] |
ZHANG D, WANG Z, LIU F, et al. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: from single- to dual-sabatier optima. J. Am. Chem. Soc., 2024, 146(5): 3210.
DOI PMID |
[74] | ZHANG T, CHEN Z, WALSH A G, et al. Single-atom catalysts supported by crystalline porous materials: views from the inside. Adv. Mater., 2020, 32(44): 2002910. |
[75] |
FU W, WAN J, ZHANG H, et al. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun., 2022, 13(1): 5496.
DOI PMID |
[76] |
LIU P, ZHAO Y, QIN R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352(6287): 797.
DOI PMID |
[77] | ZHUANG L, JIA Y, LIU H, et al. Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater., 2019, 31(4): 1805581. |
[78] | REN G, ZHAO J, ZHAO Z, et al. Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed., 2024, 63(2): e202314408. |
[79] | SHARMA P, SHARMA M, DEARG M, et al. Cd/Pt precursor solution for solar H2 production and in situ photochemical synthesis of Pt single-atom decorated CdS nanoparticles. Angew. Chem. Int. Ed., 2023, 62(20): e202301239. |
[80] | GAN T, LIU Y, HE Q, et al. Facile synthesis of kilogram-scale co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustainable Chem. Eng., 2020, 8(23): 8692. |
[81] | GAN T, HE Q, ZHANG H, et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J., 2020, 389: 124490. |
[82] | HE X, DENG Y, ZHANG Y, et al. Mechanochemical kilogram- scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci., 2020, 1(1): 100004. |
[83] | LIU Z R, LIU W, HAO C, et al. Honeycomb-like carbon- supported Fe single atom catalyst: preparation and electrocatalytic performance in oxygen reduction reaction. J. Inorg. Mater., 2021, 36(9): 943. |
[84] | CHANG W, QI B, WANG R, et al. Atomically dispersed gold nanoclusters and single atoms coexisting chiral electrode for high-performance enantioselective electrosynthesis using H2O as hydrogen source. Adv. Funct. Mater., 2024, 34(28): 2315675. |
[85] |
ROBERTSON A W, MONTANARI B, HE K, et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett., 2013, 13(4): 1468.
DOI PMID |
[86] |
WANG H, WANG Q, CHENG Y, et al. Doping monolayer graphene with single atom substitutions. Nano Lett., 2012, 12(1): 141.
DOI PMID |
[87] | LI Y, KIDKHUNTHOD P, ZHOU Y, et al. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv. Funct. Mater., 2022, 32(41): 2205985. |
[88] | SONG J, ZHANG H, SUN R, et al. Local CO generator enabled by a CO-producing core for kinetically enhancing electrochemical CO2 reduction to multicarbon products. ACS Nano, 2024, 18(17): 11416. |
[89] | JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353(6295): 150. |
[90] | QU Y, LI Z, CHEN W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal., 2018, 1(10): 781. |
[91] |
ZHOU H, ZHAO Y, GAN J, et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc., 2020, 142(29): 12643.
DOI PMID |
[92] | WANG Z, WANG C, HU Y, et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res., 2021, 14(8): 2790. |
[93] | ZHU M, ZHAO C, LIU X, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton- exchange membrane fuel cells. ACS Catal., 2021, 11(7): 3923. |
[94] | ZHANG H, TANG T, WANG H F, et al. Topological conversion of nickel foams to monolithic single-atom catalysts. Adv. Funct. Mater., 2024, 34(16): 2312939. |
[95] | ZHAO C, WANG Y, LI Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule, 2019, 3(2): 584. |
[96] | PENG Y, CAO J, SHA Y, et al. Laser solid-phase synthesis of single-atom catalysts. Light Sci. Appl., 2021, 10(1): 168. |
[97] | KAUSHIK S, WU D, ZHANG Z, et al. Universal synthesis of single-atom catalysts by direct thermal decomposition of molten salts for boosting acidic water splitting. Adv. Mater., 2024, 36(27): 2401163. |
[98] | DU X, HUANG Y, PAN X, et al. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: redispersion process and mechanism. Chin. J. Catal., 2024, 58: 237. |
[99] | YE C, SHAN J, ZHU C, et al. Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution. Adv. Energy Mater., 2023, 13(45): 2302190. |
[100] | YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal., 2019, 2(4): 304. |
[101] | XUE Z, YAN M, YU X, et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem, 2020, 6(12): 3364. |
[102] | YUE C, FENG C, SUN G, et al. Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction. Energy Environ. Sci., 2024, 17(14): 5227. |
[103] | LI Q, ZHANG Q, XU W, et al. Sowing single atom seeds: a versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction. Adv. Energy Mater., 2023, 13(10): 2203955. |
[104] |
LI J, LI K, LI Z, et al. Capture of single Ag atoms through high-temperature-induced crystal plane reconstruction. Nat. Commun., 2024, 15(1): 3874.
DOI PMID |
[105] | LU G, SCHWIDEROWSKI P, SHEN Z, et al. Macroporous carbon-supported Fe-based catalysts for the solvent-free oxidative coupling of benzylamine. Chem. Mater., 2024, 36(4): 2049. |
[106] | SONG J, QIAN S J, YANG W, et al. Nano-single-atom heterointerface engineering for pH-universal electrochemical nitrate reduction to ammonia. Adv. Funct. Mater., 2024, 34(49): 2409089. |
[107] |
ZHANG P, LI J, HUANG H, et al. Platinum single-atom nests boost solar-driven photocatalytic non-oxidative coupling of methane to ethane. J. Am. Chem. Soc., 2024, 146(34): 24150.
DOI PMID |
[108] | WAN J, ZHANG H, YANG J, et al. Synergy between Fe and Mo single atom catalysts for ammonia electrosynthesis. Appl. Catal. B-Environ. Energy, 2024, 347: 123816. |
[109] | WEN M, SUN N, JIAO L, et al. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current. Angew. Chem. Int. Ed., 2024, 63(10): e202318338. |
[110] | CHANG J, JING W, YONG X, et al. Synthesis of ultrahigh- metal-density single-atom catalysts via metal sulfide-mediated atomic trapping. Nat. Synth., 2024, 3: 1427. |
[111] | CHEN C, SUN M, ZHANG F, et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom- catalyst through a dual-metal-site design. Energy Environ. Sci., 2023, 16(4): 1685. |
[112] | ZHU M, ZHANG H, HU Y, et al. In situ nitrogen infiltration into an ordered Pt3Co alloy with sp-d hybridization to boost fuel cell performance. ACS Catal., 2024, 14(8): 5858. |
[113] | NAVEEN K, MAHVELATI-SHAMSABADI T, SHARMA P, et al. MOF-derived Co/Zn single-atom catalysts for reversible hydrogenation and dehydrogenation of quinoline hydrogen carrier. Appl. Catal. B-Environ., 2023, 328: 122482. |
[114] |
FEI H, DONG J, ARELLANO-JIMENEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun., 2015, 6: 8668.
DOI PMID |
[115] | QU Y, WANG L, LI Z, et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater., 2019, 31(44): 1904496. |
[116] |
ZHOU H, ZHAO Y, XU J, et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun., 2020, 11: 335.
DOI PMID |
[117] |
MIN Y, ZHOU X, CHEN J J, et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun., 2021, 12: 303.
DOI PMID |
[118] | DENG D, QIAN J, LIU X, et al. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater., 2022, 32(32): 2203471. |
[119] | BÜKER J, HUANG X, BITZER J, et al. Synthesis of Cu Single atoms supported on mesoporous graphitic carbon nitride and their application in liquid-phase aerobic oxidation of cyclohexene. ACS Catal., 2021, 11: 7863. |
[120] | XIA C, QIU Y, XIA Y, et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem., 2021, 13(9): 887. |
[121] |
QIAN S, XU F, FAN Y, et al. Tailoring coordination environments of single-atom electrocatalysts for hydrogen evolution by topological heteroatom transfer. Nat. Commun., 2024, 15(1): 2774.
DOI PMID |
[122] | YANG Y, XIAO Y, JIANG L, et al. Ultrahigh single Au atoms loaded porous aromatic frameworks for enhanced photocatalytic hydrogen evolution. Adv. Mater., 2024, 36(41): 2404791. |
[123] |
HAO C, LIU Z R, LIU W, et al. Research progress of carbon- supported metal single atom catalysts for oxygen reduction reaction. J. Inorg. Mater., 2021, 36(8): 820.
DOI |
[124] | JIN Y X, SONG E H, ZHU Y F. First-principles investigation of single 3d transition metals doping graphene vacancies for CO2 electroreduction. J. Inorg. Mater., 2024, 39(7): 845. |
[125] | WU J, YU L B, LIU S S, et al. NiN4Cr embedded graphene for electrochemical nitrogen fixation. J. Inorg. Mater., 2022, 37(10): 1141. |
[126] | DENG J, ZENG Y, ALMATRAFI E, et al. Advances of carbon nitride based atomically dispersed catalysts from single-atom to dual-atom in advanced oxidation process applications. Coord. Chem. Rev., 2024, 505: 215693. |
[127] | YANG X, XU L, LI Y. Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev., 2024, 516: 215961. |
[128] | CHENG C C, LIN T Y, TING Y C, et al. Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis. Nano Energy, 2023, 112: 108450. |
[129] | HAN W, LING W, GAO P, et al. Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs. Appl. Catal. B-Environ. Energy, 2024, 345: 123687. |
[130] | CHEN W, YU M, LIU S, et al. Recent progress of Ru single-atom catalyst: synthesis, modification, and energetic applications. Adv. Funct. Mater., 2024, 34(22): 2313307. |
[131] | FENG W, LIU C, ZHANG G, et al. Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity. EnergyChem, 2024, 6(2): 100119. |
[132] | LI M L, XIE Y M, SONG J, et al. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts. Chin. J. Catal., 2024, 60: 42. |
[1] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[2] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[3] | FENG Guanzheng, YANG Jian, ZHOU Du, CHEN Qiming, XU Wentao, ZHOU Youfu. Mechanism for Hydrothermal-carbothermal Synthesis of AlN Nanopowders [J]. Journal of Inorganic Materials, 2025, 40(1): 104-110. |
[4] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[5] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[6] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[7] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[8] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[9] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[10] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[13] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[14] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[15] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||