Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1077-1083.DOI: 10.15541/jim20230565
Special Issue: 【结构材料】热障与环境障涂层(202412)
• PERSPECTIVE • Next Articles
TAO Shunyan1(), YANG Jiasheng1, SHAO Fang1, WU Yingchen1,2, ZHAO Huayu1, DONG Shaoming3, ZHANG Xiangyu3, XIONG Ying4
Received:
2024-03-25
Revised:
2024-05-27
Published:
2024-10-20
Online:
2024-10-09
About author:
TAO Shunyan (1969-), male, professor. E-mail: sytao@mail.sic.ac.cn
Supported by:
CLC Number:
TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges[J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083.
Fig. 10 Schematic drawing of the Sulzer Innotec abradability test rig [44] The oxygen / propane high temperature gas is used to heat the test piece, which can be heated to 1200 ℃; Scratch speed: 50-450 m/s; Feed rate: 1.5-3000 μm/s
[1] | CORMAN G S, LUTHRA K L. Development history of GE's prepreg melt infiltrated ceramic matrix composite material and applications. Comprehensive Composite Materials II, 2018, 5: 325. |
[2] | LEONARD G, STEGMAIER J. Development of an aeroderivative gas turbine dry low emissions combustion system. Journal of Engineering for Gas Turbines and Power, 1994, 116(3): 542. |
[3] | ZHU D M, HARDER B. The development of HfO2-rare earth based oxide materials and barrier coatings for thermal protection systems. Materials Science & Technology 2014 Conference & Exhibition, Pittsburgh, 2014. |
[4] | 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战. 材料工程, 2019, 47(2): 1. |
[5] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15: 804.
DOI PMID |
[6] | CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin, 2012, 37(10): 891. |
[7] | LEE K N, ZHU D M, LIMA R S. Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): a tutorial paper. Journal of Thermal Spray Technology, 2021, 30: 40. |
[8] | TEJERO-MARTIN D, BENNETT C, HUSSAIN T. A review on environmental barrier coatings: history, current state of the art and future developments. Journal of the European Ceramic Society, 2021, 41: 1747. |
[9] | 江舟, 倪建洋, 张小锋, 等. 陶瓷基复合材料及其环境障涂层发展现状研究. 航空制造技术, 2020, 63(14): 48. |
[10] | 郑伟, 张佳平, 杨翠波. 陶瓷基复合材料环境障涂层研究进展. 纤维复合材料, 2021, 2: 65. |
[11] | 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展. 材料工程, 2018, 46(10): 1. |
[12] | 赵春玲, 杨博, 李阔, 等. 陶瓷基复合材料表面环境障涂层材料研究进展. 中国材料进展, 2021, 40(4): 257. |
[13] | 白博添, 章德铭, 冀晓鹃, 等. 环境障涂层选材研究进展. 热喷涂技术, 2022, 14(3): 1. |
[14] | HERMAN H, SAMPATH S, MCCUNE R. Thermal spray: current status and future trends. MRS Bulletin, 2000, 25(7): 17. |
[15] | LEE K N. Yb2Si2O7 environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life. Journal of the American Ceramic Society, 2019, 102(3): 1507. |
[16] | RICHARDS B T, YOUNG K A, DE FRANQUEVILLE F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor. Acta Materials, 2016, 106: 1. |
[17] | ZHU D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components//Engineered ceramics: current status and future prospects. Hoboken: John Wiley & Sons, 2015. |
[18] | BAKAN E, SOHN Y J, VASSEN R. Microstructure and phase composition evolution of silicon-hafnia feedstock during plasma spraying and following cyclic oxidation. Acta Materialia, 2021, 214: 117007. |
[19] | LI C, HE J, MA Y, et al. Evolution mechanism of the microstructure and mechanical properties of plasma-sprayed yttria-stabilized hafnia thermal barrier coating at 1400 ℃. Ceramics International, 2020, 46: 23417. |
[20] | LI G, LU X R, HUANG J Q, et al. Thermal cycling behavior and failure mechanism of the Si-HfO2 environmental barrier coating bond coats prepared by atmospheric plasma spraying. Journal of Alloys and Compounds, 2022, 913: 165319. |
[21] | ZHANG Z Y, PARK Y J, KIM D H, et al. High-temperature oxidation performance of novel environmental barrier coating 50HfO2-50SiO2/YxYb(2-x)Si2O7 at 1475 ℃. Journal of the European Ceramic Society, 2023, 43: 1127. |
[22] | JACOBSON N S. Corrosion of silicon-based ceramics in combustion environments. Journal of the American Ceramic Society, 1993, 76(1): 3. |
[23] | OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure. Journal of the American Ceramic Society, 1999, 82(3): 625. |
[24] | KLEMM H. Silicon nitride for high-temperature applications. Journal of the American Ceramic Society, 2010, 93(6): 1501. |
[25] | BAKAN E, MARCANO D, ZHOU D P, et al. Yb2Si2O7environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. Jouranl of Thermal Spray Technology, 2017, 26: 1011. |
[26] | CHEN D Y, PEGLER A, DWIVEDI G, et al. Thermal cycling behavior of air plasma-sprayed and low-pressure plasma-sprayed environmental barrier coatings. Coatings, 2021, 11: 868. |
[27] | DONG Y, REN K, LU Y, et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019, 39(7): 2574. |
[28] | SUN L, LUO Y, TIAN Z, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium- magnesium-aluminosilicate (CMAS). Corrosion Science, 2020, 175: 108881. |
[29] | RIDLEY M, OPILA E. Thermochemical stability and microstructural evolution of Yb2Si2O7in high-velocity high-temperature water vapor. Journal of the European Ceramic Society, 2020, 41(5): 3141. |
[30] | TURCER L R, PADTURE N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scripta Materialia, 2018, 154: 111. |
[31] | TIAN Z, ZHENG L, LI Z, et al. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. Journal of the European Ceramic Society, 2016, 36(11): 2813. |
[32] | TIAN Z, ZHENG L, WANG J, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1): 189. |
[33] | VISWANATHAN V, DWIVEDI G, SAMPATH S. Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. Journal of the American Ceramic Society, 2015, 98(6): 1769. |
[34] | GLEDHILL A D, REDDY K M, DREXLER J M, et al. Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Materials Science and Engineering: A, 2011, 528(24): 7214. |
[35] | KRAMER S, YANG J, LEVI C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. Journal of the American Ceramic Society, 2008, 91(2): 576. |
[36] | VARDELLE A, MOREAU C, AKEDO J, et al. The 2016 thermal spray roadmap. Journal of Thermal Spray Technology, 2016, 25(8): 1376. |
[37] | LI W, ZHAO H Y, ZHONG X H, et al. Air plasma-sprayed yttria and yttria-stabilized zirconia thermal barrier coatings subjected to calcium-magnesium-alumino-silicate (CMAS). Journal of Thermal Spray Technology, 2014, 23(6): 975. |
[38] | MECHNICH P, BRAUE W. Air plasma-sprayed Y2O3 coatings for Al2O3/Al2O3 ceramic matrix composites. Journal of the European Ceramic Society, 2013, 33: 2645. |
[39] | AUSSAVY D, BOLOT R, MONTAVON G, et al. YSZ-polyester abradable coatings manufactured by APS. Journal of Thermal Spray Technology, 2016, 25(1/2): 252. |
[40] | SPORER D, REFKE A, DRATWINSKI M, et al. New high-temperature seal system for increased efficiency of gas turbines. Sealing Technology, 2008, 10: 9. |
[41] | HUANG J Q, LIU R Y, HU Q, et al. High temperature abradable sealing coating for SiCf/SiC ceramic matrix composites. Ceramics International, 2023, 49: 1779. |
[42] | GUO M Q, CUI Y J, WANG C L, et al. Design and characterization of BSAS-polyester abradable environmental barrier coatings (A/EBCs) on SiC/SiC composites. Surface & Coatings Technology, 2023, 465: 129617. |
[43] | QIN D D, NIU Y R, LI H, et al. Fabrication and characterization of Yb2Si2O7-based composites as novel abradable sealing coatings. Ceramics International, 2021, 47: 23153. |
[44] | STEINKE T, MAUER G, VAΒEN R, et al. Process design and monitoring for plasma sprayed abradable coatings. Journal of Thermal Spray Technology, 2010, 19: 756. |
[45] | LIANG J J, MATSUMOTO K, KAWAGISHI K, et al. Morphological evolution of thermal barrier coatings with equilibrium (EQ) and NiCoCrAlY bond coats during thermal cycling. Surface & Coatings Technology, 2012, 207: 413. |
[1] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[2] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[3] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[4] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[5] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[6] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[7] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[8] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[9] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[10] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[13] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[14] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[15] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||