Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1189-1196.DOI: 10.15541/jim20240117
Special Issue: 【能源环境】燃料电池(202409)
• RESEARCH ARTICLE • Next Articles
XUE Dingxi1(), YI Bingyao1, LI Guojun1(
), MA Shuai2, LIU Keqin3
Received:
2024-03-13
Revised:
2024-05-29
Published:
2024-11-20
Online:
2024-06-24
Contact:
LI Guojun, professor. E-mail: liguojun@xjtu.edu.cnAbout author:
XUE Dingxi (1997-), male, PhD candidate. E-mail: 13636705571@163.com
Supported by:
CLC Number:
XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode[J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196.
Parameter | Value/mm | Description |
---|---|---|
L×W×H | 40×40×4.59 | Length, width and height of the SOFC model |
hASL | 0.48 | Thickness of anode support layer |
hAFL | 0.02 | Thickness of anode functional layer |
hEL | 0.02 | Thickness of electrolyte |
hCFL | 0.02 | Thickness of cathode functional layer |
hCCCL | 0.05 | Thickness of cathode current collecting layer |
Hch | 1 | Height of gas channel |
Wch | 6 | Width of gas channel |
Table 1 Geometric parameters of the model
Parameter | Value/mm | Description |
---|---|---|
L×W×H | 40×40×4.59 | Length, width and height of the SOFC model |
hASL | 0.48 | Thickness of anode support layer |
hAFL | 0.02 | Thickness of anode functional layer |
hEL | 0.02 | Thickness of electrolyte |
hCFL | 0.02 | Thickness of cathode functional layer |
hCCCL | 0.05 | Thickness of cathode current collecting layer |
Hch | 1 | Height of gas channel |
Wch | 6 | Width of gas channel |
Material | T/K | E/MPa | ||
---|---|---|---|---|
NiO | 298 | 220 | 0.32 | 11.70 |
1073 | 220 | 0.32 | 14.10 | |
Ni | 298 | 210 | 0.30 | 12.48 |
1073 | 171 | 0.30 | 16.90 | |
LSM | 298 | 41.3 | 0.28 | 11.42 |
1073 | 48.3 | 0.28 | 12.70 | |
8YSZ | 298 | 206 | 0.31 | 8.37 |
1073 | 145 | 0.31 | 10.50 | |
Frame | 298 | 216 | 0.30 | 10.06 |
1073 | 92 | 0.30 | 11.87 |
Table 2 Material parameters of the model[10, 13-17]
Material | T/K | E/MPa | ||
---|---|---|---|---|
NiO | 298 | 220 | 0.32 | 11.70 |
1073 | 220 | 0.32 | 14.10 | |
Ni | 298 | 210 | 0.30 | 12.48 |
1073 | 171 | 0.30 | 16.90 | |
LSM | 298 | 41.3 | 0.28 | 11.42 |
1073 | 48.3 | 0.28 | 12.70 | |
8YSZ | 298 | 206 | 0.31 | 8.37 |
1073 | 145 | 0.31 | 10.50 | |
Frame | 298 | 216 | 0.30 | 10.06 |
1073 | 92 | 0.30 | 11.87 |
Fig. 12 Maximum residual stresses in SOFC under different gradient conditions (a) Maximum stresses in metal frame and anode; (b) Maximum stresses in cathode and electrolyte
[1] |
TAN Y, HOON S, GUERETTE P A, et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nature Chemical Biology, 2015, 11(7): 488.
DOI PMID |
[2] | TUCKER M C. Progress in metal-supported solid oxide fuel cells: a review. Journal of Power Sources, 2010, 195(15): 4570. |
[3] | SAIED M, AHMED K, AHMED M, et al. Investigations of solid oxide fuel cells with functionally graded electrodes for high performance and safe thermal stress. International Journal of Hydrogen Energy, 2017, 42(24): 15887. |
[4] | OSMAN S, AHMED K, NEMATTALLA M, et al. Performance and thermal stresses in functionally graded anode-supported honeycomb solid-oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46(65): 33010. |
[5] | WANG Z, ZHANG N, QIAO J, et al. Improved SOFC performance with continuously graded anode functional layer. Electrochemistry Communications, 2009, 11(6): 1120. |
[6] | 丁建, 陆勇俊, 曹鑫磊, 等. 连续梯度阳极功能层的引入对阳极支撑固体氧化物燃料电池的力学性能影响. 陶瓷学报, 2019, 40(5): 583. |
[7] | SONG M, DU C, WANG B, et al. Thermal stress of solid oxide fuel cell with gradient porosity anode. Journal of the Chinese Ceramic Society, 2022, 50(5): 1233. |
[8] | ZHANG X, YAN Z, ZHOU Y, et al. Residual thermal stress and failure probability analysis of solid oxide fuel cell with gradient anode. Journal of the Chinese Ceramic Society, 2022, 50(5): 1223. |
[9] | YAN Z, HE A, HARA S, et al. Design and optimization of functionally graded electrodes for solid oxide fuel cells (SOFCs) by mesoscale modeling. International Journal of Hydrogen Energy, 2022, 47(37): 16610. |
[10] | RADOVIC M, LARA-CURZIO E. Elastic properties of nickel- based anodes for solid oxide fuel cells as a function of the fraction of reduced NiO. Journal of the American Ceramic Society, 2004, 87(12): 2242. |
[11] | KISHIMOTO M, IWAI H, SAITO M, et al. Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials. Journal of Power Sources, 2011, 196(10): 4555. |
[12] | HSIEH C L, TUAN W H. Elastic and thermal expansion behavior of two-phase composites. Materials Science and Engineering: A, 2006, 425(1/2): 349. |
[13] | MORI M, YAMAMOTO T, ITOH H, et al. Thermal expansion of nickel- zirconia anodes in solid oxide fuel cells during fabrication and operation. Journal of the Electrochemical Society, 1998, 145(4): 1374. |
[14] | JOHNSON J, QU J. Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets. Journal of Power Sources, 2008, 181(1): 85. |
[15] | MORI M, HIEI Y, SAMMES N M, et al. Thermal-expansion behaviors and mechanisms for Ca- or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres. Journal of the Electrochemical Society, 2000, 147(4): 1295. |
[16] | GRECO F, FRANDSEN H L, NAKAJO A, et al. Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack. Journal of the European Ceramic Society, 2014, 34(11): 2695. |
[17] | SUH I K, OHTA H, WASEDA Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Materials Science, 1988, 23(2): 757. |
[18] | LI Q, LI G. Modeling of the solid oxide fuel cell anode based on a new analytical model using nonlinear Butler-Volmer expression. Ionics, 2021, 27(7): 3063. |
[19] | YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of residual stresses in a SOFC stack. Journal of Power Sources, 2004, 131(1/2): 278. |
[20] | JUNG H Y, KIM W S, CHOI S H, et al. Effect of cathode current- collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 2006, 155(2): 145. |
[1] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[2] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[3] | ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Property Manipulation and Its Effect on SOFC Electrochemical Performance [J]. Journal of Inorganic Materials, 2024, 39(4): 367-373. |
[4] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[5] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[6] | FAN Shuai, JIN Tian, ZHANG Shanlin, LUO Xiaotao, LI Chengxin, LI Changjiu. Effect of Li2O Sintering Aid on Sintering Characteristics and Electrical Conductivity of LSGM Electrolyte for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2022, 37(10): 1087-1092. |
[7] | CAO Dan,ZHOU Mingyang,LIU Zhijun,YAN Xiaomin,LIU Jiang. Fabrication and Characterization of Anode-supported Solid Oxide Fuel Cell Based on Proton Conductor Electrolyte [J]. Journal of Inorganic Materials, 2020, 35(9): 1047-1052. |
[8] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[9] | Kai LI, Xiao LI, Jian LI, Jia-Miao XIE. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis [J]. Journal of Inorganic Materials, 2019, 34(6): 611-617. |
[10] | Wei WANG, Li-Li YUAN, Qian-Yuan QIU, Ming-Yang ZHOU, Mei-Lin LIU, Jiang LIU. A Direct Carbon Solid Oxide Fuel Cell Stack Based on a Single Electrolyte Plate Fabricated by Tape Casting Technique [J]. Journal of Inorganic Materials, 2019, 34(5): 509-514. |
[11] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang. Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6-δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2019, 34(10): 1109-1114. |
[12] | WANG Shi-Yang, FU Yu-Dong, CHEN Lei, WANG Yu-Jin. Fabrication and Mechanical Property of W-Y2O3 Composites and Graded material [J]. Journal of Inorganic Materials, 2018, 33(6): 596-602. |
[13] | XU Hong-Mei, ZHANG Hua, LI Heng, JIAN Yao-Yong, XIE Wu, WANG Yi-Ping, XU Ming-Ze. Preparation and Oxygen-reduction Mechanism Investigation of Nanostructure LSCF-SDC Composite Cathodes [J]. Journal of Inorganic Materials, 2017, 32(4): 379-385. |
[14] | XIE Jia-Miao, WANG Feng-Hui. Thermal Stress Analysis of Solid Oxide Fuel Cell with Anode Functional Layer [J]. Journal of Inorganic Materials, 2017, 32(4): 400-406. |
[15] | YANG Yang, TIAN Dong, DING Yan-Zhi, LU Xiao-Yong, LIN Bin, CHEN Yong-Hong. Improved Performance of Symmetrical Solid Oxide Fuel Cells with Redox-reversible Pr0.6Sr0.4Co0.2Fe0.8O3-δ Electrodes [J]. Journal of Inorganic Materials, 2017, 32(3): 235-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||