Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (3): 271-280.DOI: 10.15541/jim20240385
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Ziwei1,2(), GONG Weilu1,2, CUI Haifeng1, YE Li1(
), HAN Weijian1, ZHAO Tong1,2
Received:
2024-08-21
Revised:
2024-10-16
Published:
2025-03-20
Online:
2025-03-12
Contact:
YE Li, associate professor. E-mail: yeli@iccas.ac.cnAbout author:
LI Ziwei (1998-), female, Master candidate. E-mail: liziwi21@iccas.ac.cn
CLC Number:
LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties[J]. Journal of Inorganic Materials, 2025, 40(3): 271-280.
Fig. 2 XPS spectra of HEC-W5-SiCi obtained at different pyrolysis temperatures (a, b) Nb3d and Ta4f of HEC-W5-SiCi-1000; (c, d) Hf4f and W4f of HEC-W5-SiCi-1200; (e, f) Zr3d and Si2p of HEC-W5-SiCi-1400. Colorful figures are available on website
Fig. 6 (a-c) Surface SEM images and (d-f) grain size statistics of SiC in (a, d) HEC-W5-SiCi, (b, e) HEC-W5-SiCp, and (c, f) HEC-W5-SiCw bulk ceramics
Fig. 7 Mechanical properties of HEC-W5, HEC-W5-SiCp, HEC-W5-SiCw, and HEC-W5-SiCi ceramics (a) Vickers hardness; (b) Elasticity modulus; (c) Flexural strength; (d) Fracture toughness
Fig. 9 Flexural strength and fracture toughness of HEC-W5- SiCi ceramics of this work and data in literature[11,14,22⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓ -34] *This literature only has fracture toughness data.
Empirical formula | Content/(%, in mass) | |||||||
---|---|---|---|---|---|---|---|---|
Zr | Hf | Nb | Ta | W | Si | C | O | |
(Zr0.238Hf0.237Nb0.237Ta0.237W0.05)-Si0.347C1.405O0.031 | 13.1 | 25.6 | 13.3 | 25.9 | 5.5 | 5.9 | 10.2 | 0.3 |
Table S1 Elemental content analysis of HEC-SiCi-1600
Empirical formula | Content/(%, in mass) | |||||||
---|---|---|---|---|---|---|---|---|
Zr | Hf | Nb | Ta | W | Si | C | O | |
(Zr0.238Hf0.237Nb0.237Ta0.237W0.05)-Si0.347C1.405O0.031 | 13.1 | 25.6 | 13.3 | 25.9 | 5.5 | 5.9 | 10.2 | 0.3 |
Sample | Vickers hardness/GPa | Elasticity modulus/GPa | Flexural strength/MPa | Fracture toughness/ (MPa·m1/2) | Shape factor, Y |
---|---|---|---|---|---|
HEC-W5 | 23.82±0.49 | 447.07±3.71 | 593±15 | 5.6±0.2 | 2.537 |
HEC-W5-SiCp | 21.79±0.78 | 418.96±5.24 | 675±12 | 7.1±0.5 | 2.535 |
HEC-W5-SiCw | 21.61±0.35 | 435.50±4.38 | 726±18 | 6.7±0.3 | 2.533 |
HEC-W5-SiCi | 23.03±0.63 | 575.70±8.25 | 698±9 | 7.9±0.6 | 2.534 |
Table S2 Mechanical properties of HEC-W5, HEC-W5-SiCp, HEC-W5-SiCw, and HEC-W5-SiCi ceramics
Sample | Vickers hardness/GPa | Elasticity modulus/GPa | Flexural strength/MPa | Fracture toughness/ (MPa·m1/2) | Shape factor, Y |
---|---|---|---|---|---|
HEC-W5 | 23.82±0.49 | 447.07±3.71 | 593±15 | 5.6±0.2 | 2.537 |
HEC-W5-SiCp | 21.79±0.78 | 418.96±5.24 | 675±12 | 7.1±0.5 | 2.535 |
HEC-W5-SiCw | 21.61±0.35 | 435.50±4.38 | 726±18 | 6.7±0.3 | 2.533 |
HEC-W5-SiCi | 23.03±0.63 | 575.70±8.25 | 698±9 | 7.9±0.6 | 2.534 |
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Ref. |
---|---|---|---|
(Ti0.25Nb0.25Hf0.25Ta0.25)C0.3N0.7 | 481±56b | 7.17±0.62c | [22] |
(TiZrHfVNbTa)C | 473±21b | 3.6±0.2c | [23] |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C | 400b | 5.9c | [24] |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C | 450±64b | 4.8±0.2c | [25] |
(Hf0.2Ta0.2Zr0.2Nb0.2Ti0.2)C | 494b | 2.306d | [26] |
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | 421±27a | 3.5±0.3d | [27] |
(Ti0.2Hf0.2Zr0.2Nb0.2Ta0.2)B2 | - | 2.83±0.15e | [28] |
(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 | 376±25b | 4.70±0.27c | [29] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 | 339±17a | 3.81±0.40c | [30] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 447±45a | 4.85±0.33c | [30] |
(NbTaZrW)C-50SiCP | 455b | 6.54c | [31] |
(HfZrTaTiW)C-1.5wt%SiCnw | 626.5b | 6.2e | [32] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 750±43b | 4.12±0.20e | [33] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 476±42b | 4.63±0.23c | [34] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-20SiCp | 554±73a | 5.24±0.41c | [11] |
HEC-W5 | 593±15b | 5.6±0.2c | [14] |
HEC-W5-SiCp | 675±12b | 7.1±0.5c | This work |
HEC-W5-SiCw | 726±18b | 6.7±0.3c | This work |
HEC-W5-SiCi | 698±9b | 7.9±0.6c | This work |
Table S3 Flexural strength and fracture toughness of HEC-W5-SiCi ceramics and previous studies[11,14,22⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓ -34]
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Ref. |
---|---|---|---|
(Ti0.25Nb0.25Hf0.25Ta0.25)C0.3N0.7 | 481±56b | 7.17±0.62c | [22] |
(TiZrHfVNbTa)C | 473±21b | 3.6±0.2c | [23] |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C | 400b | 5.9c | [24] |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C | 450±64b | 4.8±0.2c | [25] |
(Hf0.2Ta0.2Zr0.2Nb0.2Ti0.2)C | 494b | 2.306d | [26] |
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | 421±27a | 3.5±0.3d | [27] |
(Ti0.2Hf0.2Zr0.2Nb0.2Ta0.2)B2 | - | 2.83±0.15e | [28] |
(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 | 376±25b | 4.70±0.27c | [29] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 | 339±17a | 3.81±0.40c | [30] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 447±45a | 4.85±0.33c | [30] |
(NbTaZrW)C-50SiCP | 455b | 6.54c | [31] |
(HfZrTaTiW)C-1.5wt%SiCnw | 626.5b | 6.2e | [32] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 750±43b | 4.12±0.20e | [33] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-20SiCp | 476±42b | 4.63±0.23c | [34] |
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-20SiCp | 554±73a | 5.24±0.41c | [11] |
HEC-W5 | 593±15b | 5.6±0.2c | [14] |
HEC-W5-SiCp | 675±12b | 7.1±0.5c | This work |
HEC-W5-SiCw | 726±18b | 6.7±0.3c | This work |
HEC-W5-SiCi | 698±9b | 7.9±0.6c | This work |
[1] | DUBE T C, ZHANG J. Underpinning the relationship between synthesis and properties of high entropy ceramics: a comprehensive review on borides, carbides and oxides. Journal of the European Ceramic Society, 2024, 44(3): 1335. |
[2] | YE B L, WEN T Q, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Materialia, 2019, 170: 15. |
[3] | YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. Journal of the American Ceramic Society, 2019, 102(7): 4344. |
[4] | MA M D, SUN Y N, WU Y J, et al. Nanocrystalline high-entropy carbide ceramics with improved mechanical properties. Journal of the American Ceramic Society, 2022, 105(1): 606. |
[5] | YE B L, WEN T Q, CHU Y H. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. Journal of the American Ceramic Society, 2020, 103(1): 500. |
[6] | YE B L, WEN T Q, LIU D, et al.Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corrosion Science, 2019, 153: 327. |
[7] | WANG Y C, ZHANG B H, ZHANG C Y, et al. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 ℃. Journal of Materials Science & Technology, 2022, 113: 40. |
[8] | WANG F, YAN X L, WANG T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Materialia, 2020, 195: 739. |
[9] | CAO Z N, SUN J L, MENG L T, et al. Progress in densification and toughening of high entropy carbide ceramics. Journal of Materials Science & Technology, 2023, 161: 10. |
[10] | RITCHIE R O. Toughening materials: enhancing resistance to fracture. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2021, 379(2203): 20200437. |
[11] | LU K, LIU J X, WEI X F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. Journal of the European Ceramic Society, 2020, 40(5): 1839. |
[12] | LUO S C, GUO W M, ZHOU Y Z, et al. Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics. Journal of Materials Science & Technology, 2021, 94: 99. |
[13] | SUN J L, ZHAO J Z, CHEN Y C, et al. Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Materials Today Physics, 2022, 22: 100595. |
[14] | GONG W L, YE L, SONG R H, et al. Polymer-derived W-doping (Zr, Hf, Nb, Ta)C high entropy ceramics: preparation, properties and DFT calculation. Ceramics International, 2024, 50(5): 8284. |
[15] | YU Y X, GUO Y D, CHENG X, et al. Pyrolysis behavior of titanium-containing polycarbosilane in air. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20(4): 714. |
[16] | LYU Y, TANG H T, ZHAO G D. Effect of Hf and B incorporation on the SiOC precursor architecture and high-temperature oxidation behavior of SiHfBOC ceramics. Journal of the European Ceramic Society, 2020, 40(2): 324. |
[17] | WANG X Z, ZHANG L Y, WANG Y F. Preparation of HfC-SiC ultra-high-temperature ceramics by the copolycondensation of HfC and SiC precursors. Journal of Materials Science, 2022, 57(7): 4467. |
[18] | WU Y H, CHEN F H, HAN W J, et al. Synthesis and pyrolysis of non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics. Ceramics International, 2020, 46(14): 22102. |
[19] | WU S B, SONG K R, SHI F Y, et al. Polymer precursor synthesis of novel ZrC-SiC ultrahigh-temperature ceramics and modulation of their molecular structure. Ceramics International, 2023, 49(1): 707. |
[20] | RAO X H, ZHANG F H, LUO X H, et al. Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test. Materials Science and Engineering: A, 2019, 744: 426. |
[21] | 朱和国, 王天驰, 贾阳, 等. 复合材料原理(第2版). 北京: 电子工业出版社, 2016:55-73. |
[22] | WANG H Y, BI J Q, YANG Y, et al. Preparation, characterization and performance of high-entropy carbonitride ceramics. Ceramics International, 2024, 50(2): 3034. |
[23] | CHEN L, ZHANG W, TAN Y Q, et al. Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering. Journal of the European Ceramic Society, 2021, 41(16): 60. |
[24] | WANG F, ZHANG X, YAN X L, et al. The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics. Journal of the American Ceramic Society, 2020, 103(8): 4463. |
[25] | YU D, YIN J, ZHANG B H, et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. Journal of the European Ceramic Society, 2021, 41(6): 3823. |
[26] | SUN K B, YANG Z W, MU R J, et al. Densification and joining of a (HfTaZrNbTi)C high-entropy ceramic by hot pressing. Journal of the European Ceramic Society, 2021, 41(6): 3196. |
[27] | FENG L, CHEN W T, FAHRENHOLTZ W G, et al. Strength of single-phase high-entropy carbide ceramics up to 2300 ℃. Journal of the American Ceramic Society, 2020, 104(1): 419. |
[28] | GU J F, ZOU J, SUN S K, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Science China Materials, 2019, 62(12): 1898. |
[29] | QIAO L G, LIU Y, GAO Y, et al. First-principles prediction, fabrication and characterization of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy borides. Ceramics International, 2022, 48(12): 17234. |
[30] | LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020, 9(4): 503. |
[31] | PENG F, WEI Z, SONG Q Q, et al. Simultaneous hardening and toughening of a high-entropy (NbTaZrW)C ceramic carbide using SiC particle. Journal of the American Ceramic Society, 2023, 106(7): 4443. |
[32] | SUN J L, ZHAO J, CHEN Y, et al. Toughening in low-dimensional nanomaterials high-entropy ceramic nanocomposite. Composites Part B: Engineering, 2022, 231: 109586. |
[33] | KOMBAMUTHU V, ÜNSAL H, CHLUP Z, et al. Effect of SiC on densification, microstructure and mechanical properties of high entropy diboride (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2. Journal of the European Ceramic Society, 2024, 106(7): 5358. |
[34] | HUANG F L, WANG H L, FANG C, et al. Improved damage tolerance and oxidation resistance of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) B2-SiC by introducing chopped carbon fibers. Journal of Advanced Ceramics, 2024, 13(1): 101. |
[1] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[2] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[3] | BAO Weichao, GUO Xiaojie, XIN Xiaoting, PENG Pai, WANG Xingang, LIU Jixuan, ZHANG Guojun, XU Fangfang. Establishment of Symbiotic Structure with Metal Atomic-layer Phase-separation in Carbide Ceramics [J]. Journal of Inorganic Materials, 2025, 40(1): 17-22. |
[4] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[5] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[6] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[7] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[10] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[11] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[12] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[13] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[14] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[15] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||