Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1292-1300.DOI: 10.15541/jim20240085
• RESEARCH LETTER • Previous Articles
Received:
2024-02-28
Revised:
2024-06-12
Published:
2024-11-20
Online:
2024-06-24
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cnAbout author:
XIE Tian (1993-), male, PhD. E-mail: xietian1993@sjtu.edu.cn
Supported by:
CLC Number:
XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides[J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300.
Fig. 1 Lateral and top views of (2×2×4) slab models (a) (0001) surface of hexagonal close-packed Zn; (b) (111) surface of face-centered cubic Pt; (c) (0001) surface of hexagonal ZnO; (d) (110) surface of tetragonal PtO2; Surfaces are separated by 15 Å of vacuum; T, B, H, and F stand for top, bridge, HCP hollow, and FCC hollow adsorption sites in (a, b); TO, TM, HO, and B stand for top of O, top of metal, hollow, and metal-oxygen bridge adsorption sites in (c, d) Colorful figures are available on website
Zn | Cd | Pd | Pt | ZnO | CdO | PdO2 | PtO2 | |
---|---|---|---|---|---|---|---|---|
0.63 | 0.81 | -0.57 | -0.49 | -1.94 | -0.69 | -2.13 | -1.05 | |
Adsorption site (H) | HCP | FCC | FCC | FCC | O top | O top | O top | O top |
-2.41 | -2.24 | -2.11 | -2.16 | -0.25 | 1.17 | -0.43 | -0.72 | |
Adsorption site (O) | HCP | FCC | FCC | FCC | O top | O top | M top | M top |
-5.04 | -4.70 | -7.97 | -8.39 | -8.32 | -4.62 | -9.86 | -5.43 | |
Adsorption site (C) | FCC | FCC | HCP | FCC | O top | O top | M top | M top |
Table 1 Adsorption energies and preferred adsorption sites for H, O, and C on TM and TMO
Zn | Cd | Pd | Pt | ZnO | CdO | PdO2 | PtO2 | |
---|---|---|---|---|---|---|---|---|
0.63 | 0.81 | -0.57 | -0.49 | -1.94 | -0.69 | -2.13 | -1.05 | |
Adsorption site (H) | HCP | FCC | FCC | FCC | O top | O top | O top | O top |
-2.41 | -2.24 | -2.11 | -2.16 | -0.25 | 1.17 | -0.43 | -0.72 | |
Adsorption site (O) | HCP | FCC | FCC | FCC | O top | O top | M top | M top |
-5.04 | -4.70 | -7.97 | -8.39 | -8.32 | -4.62 | -9.86 | -5.43 | |
Adsorption site (C) | FCC | FCC | HCP | FCC | O top | O top | M top | M top |
Fig. 2 Variation of the adsorption energy under biaxial strain with respect to the unstrained state $E_{\text{ads}}^{\text{X}}(\varepsilon )-E_{\text{ads}}^{\text{X}}(0)$ for different absorbates as a function of the biaxial strain $\varepsilon $ Hexagonal Zn and Cd as well as ZnO and CdO, adsorbed with (a) H, (b) O, and (c) C; Cubic Pd and Pt as well as tetragonal PdO2 and PtO2, adsorbed with (d) H, (e) O and (f) C
Fig. 3 Adsorption energies of strained slabs as a function of the Fermi energy in the strained slab with the corresponding adsorbate (a) H, (b) O and (c) C adsorption on TM; (d) H, (e) O and (f) C adsorption on TMO Empty symbol: adsorption energy without strain; Solid symbol on the left of empty symbol: adsorption energy under biaxial tensile strains; Solid symbol on the right of empty symbol: adsorption energy under biaxial compressive strains
Fig. 4 PDOS onto d orbital of the Pt atom nearest to the C or O adsorbate and PDOS onto p orbital of the O atom nearest to the H adsorbate on the (111) PtO2 surface (a) Unstrained, clean slab and unstrained slab with different adsorbates; (b) Clean slab subjected to different biaxial strains; Slabs with (c) H, (d) O, and (e) C adsorbed and subjected to different biaxial strains; (f) Positions of the d-band center of Pt atom close to the C or O adsorbate and of the p-band center of O atom nearest to the H adsorbate on the (111) PtO2 surfaces subjected to different strains; Energy values are referenced to the Fermi level of the slab; Colorful figures are available on website
Fig. 5 PDOS onto p orbital of the O atom nearest to the H adsorbate on the (110) ZnO surface (a) Unstrained, clean slab and unstrained slab with different adsorbates; (b) Clean slab subjected to different biaxial strains; Slabs with (c) H, (d) O, and (e) C adsorbed and subjected to different biaxial strains; (f) Positions of the p-band of O atom nearest to the adsorbate on the (110) ZnO surfaces subjected to different strains; Energy values are referenced to the Fermi level of the slab; Colorful figures are available on website
Fig. S1 Schematic diagram of the most stable adsorption site (a, b) C adsorbed on Zn surface (a) FCC site and (b) HCP site; (c, d) C adsorbed on Pt surface (c) FCC site and (d) HCP site; (e) The most stable adsorption site for C atom on the ZnO surface; (f, g) C adsorbed on PtO2 surface (f) metal top site and (g) oxygen top site Colorful figures are available on website
Fig. S2 Effect of biaxial elastic strains $\varepsilon $ on adsorption energies of H, O and C on TM and TMO (a) H on TM; (b) O on TM; (c) C on TM; (d) H on TMO; (e) O on TMO; (f) C on TMO
Adsorbate | Zn | Cd | Pd | Pt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | O | C | H | O | C | H | O | C | H | O | C | |
Top metal | 0.88 | -0.23 | -4.33 | 1.13 | -0.19 | -2.88 | -0.18 | -0.77 | -6.92 | -0.11 | -0.48 | -6.36 |
Bridge | 0.71 | -1.55 | -4.57 | 0.84 | -1.69 | -3.04 | -0.41 | -1.65 | -7.13 | -0.35 | -1.76 | -7.22 |
FCC | 0.68 | -2.26 | -5.04 | 0.81 | -2.24 | -3.92 | -0.57 | -2.11 | -7.97 | -0.49 | -2.16 | -8.39 |
HCP | 0.63 | -2.41 | -4.79 | 0.83 | -2.21 | -3.85 | -0.48 | -1.98 | -7.63 | -0.44 | -2.14 | -8.13 |
Table S1 Adsorption energy (eV) for H, O, and C on TM
Adsorbate | Zn | Cd | Pd | Pt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | O | C | H | O | C | H | O | C | H | O | C | |
Top metal | 0.88 | -0.23 | -4.33 | 1.13 | -0.19 | -2.88 | -0.18 | -0.77 | -6.92 | -0.11 | -0.48 | -6.36 |
Bridge | 0.71 | -1.55 | -4.57 | 0.84 | -1.69 | -3.04 | -0.41 | -1.65 | -7.13 | -0.35 | -1.76 | -7.22 |
FCC | 0.68 | -2.26 | -5.04 | 0.81 | -2.24 | -3.92 | -0.57 | -2.11 | -7.97 | -0.49 | -2.16 | -8.39 |
HCP | 0.63 | -2.41 | -4.79 | 0.83 | -2.21 | -3.85 | -0.48 | -1.98 | -7.63 | -0.44 | -2.14 | -8.13 |
Adsorbate | ZnO | CdO | PdO2 | PtO2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | O | C | H | O | C | H | O | C | H | O | C | |
M top | 1.37 | 1.91 | -6.16 | 1.68 | 3.14 | -1.12 | -0.77 | -0.43 | -9.86 | 1.12 | -0.72 | -5.43 |
O top | -1.94 | -0.25 | -8.32 | -0.69 | 1.17 | -4.61 | -2.13 | 0.99 | -6.45 | -1.05 | 1.03 | -2.17 |
M-O Bridge | -0.13 | -0.15 | -7.16 | 1.63 | 2.17 | -3.85 | -1.02 | 0.36 | -6.52 | 0.98 | -0.32 | -2.22 |
Hollow | -0.37 | -0.22 | -8.22 | -0.64 | 1.51 | -4.26 | -1.35 | 0.03 | -6.88 | 0.86 | -0.66 | -2.85 |
Table S2 Adsorption energy (eV) and preferred adsorption sites for H, O, and C on TMO
Adsorbate | ZnO | CdO | PdO2 | PtO2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | O | C | H | O | C | H | O | C | H | O | C | |
M top | 1.37 | 1.91 | -6.16 | 1.68 | 3.14 | -1.12 | -0.77 | -0.43 | -9.86 | 1.12 | -0.72 | -5.43 |
O top | -1.94 | -0.25 | -8.32 | -0.69 | 1.17 | -4.61 | -2.13 | 0.99 | -6.45 | -1.05 | 1.03 | -2.17 |
M-O Bridge | -0.13 | -0.15 | -7.16 | 1.63 | 2.17 | -3.85 | -1.02 | 0.36 | -6.52 | 0.98 | -0.32 | -2.22 |
Hollow | -0.37 | -0.22 | -8.22 | -0.64 | 1.51 | -4.26 | -1.35 | 0.03 | -6.88 | 0.86 | -0.66 | -2.85 |
ZnO | CdO | PdO2 | PtO2 | ZnO | CdO | PdO2 | PtO2 | ||
---|---|---|---|---|---|---|---|---|---|
Adsorbed O | 0.02 | -0.41 | -0.36 | -0.47 | Adsorbed O | 0.43 | -0.07 | 0.49 | 0.56 |
Charge O | -0.47 | -0.98 | -0.57 | -0.71 | Charge O | -1.08 | -1.07 | -0.76 | -0.76 |
Charge M | 1.32 | 1.23 | 1.68 | 1.98 | Charge M | 1.26 | 1.15 | 1.62 | 1.81 |
Surface O average | -1.03 | -1.04 | -0.72 | -0.83 | Surface O average | -1.15 | -1.10 | -0.85 | -0.92 |
Surface M average | 1.26 | 1.22 | 1.66 | 1.93 | Surface M average | 1.24 | 1.13 | 1.50 | 1.61 |
-0.25 | 1.17 | -0.43 | -0.72 | -1.94 | -0.69 | -2.13 | -1.05 |
Table S3 Bader charges for selected atoms in ZnO, CdO, PdO2, and PtO2
ZnO | CdO | PdO2 | PtO2 | ZnO | CdO | PdO2 | PtO2 | ||
---|---|---|---|---|---|---|---|---|---|
Adsorbed O | 0.02 | -0.41 | -0.36 | -0.47 | Adsorbed O | 0.43 | -0.07 | 0.49 | 0.56 |
Charge O | -0.47 | -0.98 | -0.57 | -0.71 | Charge O | -1.08 | -1.07 | -0.76 | -0.76 |
Charge M | 1.32 | 1.23 | 1.68 | 1.98 | Charge M | 1.26 | 1.15 | 1.62 | 1.81 |
Surface O average | -1.03 | -1.04 | -0.72 | -0.83 | Surface O average | -1.15 | -1.10 | -0.85 | -0.92 |
Surface M average | 1.26 | 1.22 | 1.66 | 1.93 | Surface M average | 1.24 | 1.13 | 1.50 | 1.61 |
-0.25 | 1.17 | -0.43 | -0.72 | -1.94 | -0.69 | -2.13 | -1.05 |
[1] | KWEON D H, JEON I Y, BAEK J B. Electrochemical catalysts for green hydrogen energy. Advanced Energy and Sustainability Research, 2021, 2(7): 2100019. |
[2] | GUO J, JIAO S, YA X, et al. Ultrathin Pd‐based perforated nanosheets for fuel cells electrocatalysis. ChemElectroChem, 2022, 9(21): e202200729. |
[3] | WIJAYA D T, LEE C W. Metal-organic framework catalysts: a versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chemical Engineering Journal, 2022, 446(3): 138311. |
[4] | XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51: 2710. |
[5] | FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem, 2014, 1(12): 2075. |
[6] | LEE Y, SUNTIVICH J, MAY K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. Journal of Physical Chemistry Letters, 2012, 3(3): 399. |
[7] |
WU T, HAN M, ZHU X, et al. The electrochemical corrosion of an air thermally-treated carbon fiber cloth electrocatalyst with outstanding oxygen evolution activity under alkaline conditions. Chemical Communications, 2019, 55(15): 2344.
DOI PMID |
[8] | SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46(2): 337. |
[9] |
NIE Y, LI L, WEI Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44(8): 2168.
DOI PMID |
[10] |
KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302.
DOI PMID |
[11] |
DOYLE R L, GODWIN I J, BRANDON M P, et al. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Physical Chemistry Chemical Physics, 2013, 15(33): 13737.
DOI PMID |
[12] |
LANG R, DU X, HUANG Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chemical Reviews, 2020, 120(21): 11986.
DOI PMID |
[13] | SUN Y, CHEN G, XI S, et al. Catalytically influential features in transition metal oxides. ACS Catalysis, 2021, 11(22): 13947. |
[14] | KUHLENBECK H, SHAIKHUTDINOV S, FREUND H J. Well- ordered transition metal oxide layers in model catalysis -- a series of case studies. Chemical Reviews, 2013, 113(6): 3986. |
[15] | XIONG W, YIN H, WU T, et al. Challenges and opportunities of transition metal oxides as electrocatalysts. Chemistry, 2023, 29(5): e202202872. |
[16] | XU L, WANG Z, WANG J, et al. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 2017, 28(16): 165402. |
[17] | MOCK S A, SHARP S E, STONER T R, et al. CeO2 nanorods- supported transition metal catalysts for co oxidation. Journal of Colloid and Interface Science, 2016, 466: 261. |
[18] | MEFFORD J T, RONG X, ABAKUMOV A M, et al. Water electrolysis on La1-XSrXCoO3-δ perovskite electrocatalysts. Nature Communication, 2016, 7: 11053. |
[19] | KUANG X, KANG B, WANG Z, et al. Sulfur-doped CoO nanoflakes with loosely packed structure realizing enhanced oxygen evolution reaction. Chemistry, 2018, 24(65): 17288. |
[20] | LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nature Reviews Materials, 2017, 2(11): 17059. |
[21] | KHORSHIDI A, VIOLET J, HASHEMI J, et al. How strain can break the scaling relations of catalysis. Nature Catalysis, 2018, 1(4): 263. |
[22] |
JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44(8): 2060.
DOI PMID |
[23] | ESCUDERO-ESCRIBANO, MALACRIDA M P, HANSEN M H, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352(6281): 73. |
[24] | AMAKAWA K, SUN L, GUO C, et al. How strain affects the reactivity of surface metal oxide catalysts. Angewandte Chemie International Edition, 2013, 52(51): 13553. |
[25] | LING T, YAN D Y, WANG H, et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communication, 2017, 8: 1509. |
[26] | NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 2005, 152(3): J23. |
[27] | MARTÍNEZ-ALONSO C, GUEVARA-VELA J M, JAVIER L L. Understanding the effect of mechanical strains on the catalytic activity of transition metals. Physical Chemistry Chemical Physics, 2022, 24(8): 4832. |
[28] | MARTÍNEZ-ALONSO C, GUEVARA-VELA J M, JAVIER L L. The effect of elastic strains on the adsorption energy of H, O, and OH in transition metals. Physical Chemistry Chemical Physics, 2021, 23(37): 21295. |
[29] | BAHN S R, JACOBS K W. An object-oriented scripting interface to a legacy electronic structure code. Computing in Science & Engineering, 2002, 4(3): 56. |
[30] | JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002. |
[31] | GIANNOZZI P, BARONI S, BONINI N, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. |
[32] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 50(24): 308. |
[33] | TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009, 21(8): 084204. |
[34] | SANVILLE E, KENNY S D, SMITH R, et al. Improved grid- based algorithm for Bader charge allocation. Journal of Computational Chemistry, 2007, 28(5): 899. |
[35] | HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354. |
[36] | HAN J, SUN H, SHI T, et al. Rationalization of nonlinear adsorption energy-strain relations and Bronsted-Evans-Polanyi and transition state scaling relationships under strain. Journal of Physical Chemistry Letters, 2021, 12(47): 11578. |
[37] | HAMMER B N, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces. Surface Science, 1995, 343: 211. |
[38] | HAMMER B N, NØRSKOV J K. Why gold is the noblest of all the metals. Nature, 1995, 376(20): 238. |
[39] | MAVRIKAKIS M, HAMMER B N, NØRSKOV J K. Effect of strain on the reactivity of metal surfaces. Physical Review B, 1998, 81(13): 2819. |
[40] | PANG Q, ZHANG Y, ZHANG J M, et al. Structural and electronic properties of atomic oxygen adsorption on Pt(111): a density-functional theory study. Applied Surface Science, 2011, 257(7): 3047. |
[41] | KATTEL S, WANG G. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. Journal of Chemical Physics, 2014, 141(12): 124713. |
[42] | JACOBS R, HWANG J, SHAO-HORN Y, et al. Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chemistry of Materials, 2019, 31(3): 785. |
[43] | DEMAISON J, CSÁSZÁR A G. Equilibrium Co bond lengths. Journal of Molecular Structure, 2012, 1023: 7. |
[1] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[2] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[3] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[4] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[5] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[6] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[7] | GUO Lingxiang, TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia. Ablation Resistance of High-entropy Oxide Coatings on C/C Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 61-70. |
[8] | WANG Lei, LI Jianjun, NING Jun, HU Tianyu, WANG Hongyang, ZHANG Zhanqun, WU Linxin. Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism [J]. Journal of Inorganic Materials, 2023, 38(4): 469-476. |
[9] | YANG Daihui, SUN Tian, TIAN Hexin, SHI Xiaofei, MA Dongwei. Iron-nitrogen-codoped Mesoporous Carbon: Facile Synthesis and Catalytic Performance of Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2023, 38(11): 1309-1315. |
[10] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[11] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[12] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[13] | HU Yue, AN Lin, HAN Xin, HOU Chengyi, WANG Hongzhi, LI Yaogang, ZHANG Qinghong. RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance [J]. Journal of Inorganic Materials, 2022, 37(8): 873-882. |
[14] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[15] | WANG Peng, JIN Zunlong, CHEN Ningguang, LIU Yonghao. Theoretical Investigation of Mo Doped α-MnO2 Electrocatalytic Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2022, 37(5): 541-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||