Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (9): 979-991.DOI: 10.15541/jim20240102
• REVIEW • Previous Articles Next Articles
YANG Xin1,2,3(), HAN Chunqiu2,4, CAO Yuehan2(
), HE Zhen2, ZHOU Ying1,2(
)
Received:
2024-03-05
Revised:
2024-04-07
Published:
2024-09-20
Online:
2024-04-19
Contact:
CAO Yuehan, associate professor. E-mail: yhcao419@163.com;About author:
YANG Xin (1999-), male, Master candidate. E-mail: yangxin9633@outlook.com
Supported by:
CLC Number:
YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides[J]. Journal of Inorganic Materials, 2024, 39(9): 979-991.
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
Table 1 Properties of metal oxides used in the study of eNitRR
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
Fig. 3 Catalytic performance of Cu/Cu2O NWAs[63] (a) Nitrate conversion efficiency and FE at different voltages; (b) Nuclear magnetic resonance (NMR) spectra of nitrogen sources; (c) Raman spectra; (d) In-situ mass spectrometry spectra; (e) Free energy image
Fig. 4 Characterization of catalytic performance of Cu/Cu2O[51] (a) FE of NH3 and NO2− at different potentials; (b) Corresponding NH3 generation rates and bias current densities at different potentials; (c) Potential-induced electrocatalytic reconstruction of Cu2O cube; (d) Free energy diagram
Fig. 5 Characterization of catalytic performance of Fe3O4/SS[48] (a) Current density of different product fractions; (b) Ammonia-producing activity of Fe3O4/SS; (c) Cyclic test of Fe3O4/SS at -0.50 V; (d) Free energy diagram
Fig. 6 Characterization of catalytic performance of Cu-Fe3O4[49] (a) NH3 yield and FE of Cu-Fe3O4; (b) Comparison of ammonia yields of different catalytic materials; (c) Free energy diagram
Fig. 7 Characterization of catalytic performance of TiO2-x[40] (a) NO3- conversion rates and NH3 FE of TiO2-x; (b) TiO2-x ammonia production cycle test; (c) Differential electrocatalytic mass spectra; (d, e) Free energy diagrams of (d) TiO2 and (e) TiO2-x
Fig. 8 Characterization of catalytic performance of PdCu NPs/TiO2-x[43] (a) Ammonia production activity and FE of different materials; (b) Product selectivity of different materials; (c, d) Partial crystal orbital layouts of (c) TiO2-x and (d) PdCu NPs/TiO2-x; (e) Density of states diagram; (f) Schematic diagram of catalytic kinetics of the d band center
[1] | FU X, ZHANG J, KANG Y. Recent advances and challenges of electrochemical ammonia synthesis. Chem Catalysis, 2022, 2(10): 2590. |
[2] | QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437. |
[3] | BRUCH Q J, CONNOR G P, MCMILLION N D, et al. Considering electrocatalytic ammonia synthesis via bimetallic dinitrogen cleavage. ACS Catalysis, 2020, 10(19): 10826. |
[4] | MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186. |
[5] | JIANG L, FU X. An ammonia-hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China. Engineering, 2021, 7(12): 1688. |
[6] | ZHENG J, JIANG L, LYU Y, et al. Green synthesis of nitrogen-to- ammonia fixation: past, present, and future. Energy & Environmental Materials, 2022, 5(2): 452. |
[7] |
OUYANG L, LIANG J, LUO Y, et al. Recent advances in electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2023, 50: 6.
DOI |
[8] | CHEN W, XU Y, LIU J, et al. Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorganic Chemistry Frontiers, 2023, 10(17): 4901. |
[9] | CHEN W, YANG X, CHEN Z, et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Advanced Functional Materials, 2023, 33(29): 2300512. |
[10] |
FU X, PEDERSEN J B, ZHOU Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707.
DOI PMID |
[11] | SONG W, YUE L, FAN X, et al. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorganic Chemistry Frontiers, 2023, 10(12): 3489. |
[12] | GUO H, YANG P, YANG Y, et al. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, 2023, 20(17): 2309007. |
[13] | REICHLE S, FELDERHOFF M, SCHÜTH F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angewandte Chemie International Edition, 2021, 60(50): 26385. |
[14] |
ZOU X, XIE J, WANG C, et al. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: investigations and challenges. Chinese Chemical Letters, 2023, 34(6): 107908.
DOI |
[15] | CHEN G F, YUAN Y, JIANG H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605. |
[16] | HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55: 146. |
[17] | XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51(7): 2710. |
[18] | GAO W, XIE K, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Advanced Materials, 2023, 35(19): 2202952. |
[19] | WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12: 2870. |
[20] | ZHENG W, ZHU L, YAN Z, et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater. Environmental Science & Technology, 2021, 55(19): 13231. |
[21] | ZHANG X, WANG Y, LIU C, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 2021, 403: 126269. |
[22] | DU H, LUO H, JIANG M, et al. A review of activating lattice oxygen of metal oxides for catalytic reactions: reaction mechanisms, modulation strategies of activity and their practical applications. Applied Catalysis A: General, 2023, 664: 119348. |
[23] | LING T, ZHANG T, GE B, et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Advanced Materials, 2019, 31(16): 1807771. |
[24] | XU Y, YANG H, CHANG X, et al. Introduction to electrocatalytic kinetics. Acta Physico-Chimica Sinica, 2023, 39(4): 2210025. |
[25] |
TANG M, TONG Q, LI Y, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles. Chinese Chemical Letters, 2023, 34(12): 108410.
DOI |
[26] | HAN S, LI H, LI T, et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nature Catalysis, 2023, 6(5): 402. |
[27] | LIAO P, KANG J, XIANG R, et al. Electrocatalytic systems for NOx valorization in organonitrogen synthesis. Angewandte Chemie International Edition, 2024, 63(3): e202311752. |
[28] | YIN H, CHEN Z, XIONG S, et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis, 2021, 1(5): 1088. |
[29] | DU X, HUANG J, ZHANG J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angewandte Chemie International Edition, 2019, 58(14): 4484. |
[30] |
ZHANG Z, FENG C, WANG D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13: 2473.
DOI PMID |
[31] | FENG C, ZHANG Z, WANG D, et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. Journal of the American Chemical Society, 2022, 144(21): 9271. |
[32] | ZHANG Y, ZHENG H, ZHOU K, et al. Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia. Advanced Materials, 2023, 35(10): 2209855. |
[33] | REN J T, CHEN L, WANG H Y, et al. Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy & Environmental Science, 2024, 17(1): 49. |
[34] | OGAWA N, IKEDA S. On the electrochemical reduction of nitrate ion in the presence of various metal ions. Analytical Sciences, 1991, 7: 1681. |
[35] | BOESE S W, ARCHER V S. Electrochemical reduction of nitrate in the presence of ytterbium(III). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 273. |
[36] | YU J, YONG X, CAO A, et al. Bi-layer single atom catalysts boosted nitrate-to-ammonia electroreduction with high activity and selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015. |
[37] | JING Q, MEI Z, SHENG X, et al. 3d orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chemical Engineering Journal, 2023, 462: 142321. |
[38] |
CHEN H, WU Q, WANG Y, et al. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chemical Communications, 2022, 58(56): 7730.
DOI PMID |
[39] | MOLTVED K A, KEPP K P. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. Journal of Physical Chemistry C, 2019, 123(30): 18432. |
[40] | JIA R, WANG Y, WANG C, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catalysis, 2020, 10(6): 3533. |
[41] | QIU W, XIE M, WANG P, et al. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small, 2023, 19(30): 2300437. |
[42] | GUO Y, ZHANG R, ZHANG S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy & Environmental Science, 2021, 14(7): 3938. |
[43] | WU H, GUO H, ZHANG F, et al. Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO2 support for selective nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2023, 11(41): 22466. |
[44] | ZHAO D, MA C, LI J, et al. Direct eight-electron NO3- to NH3 conversion: using a Co-doped TiO2 nanoribbon array as a high- efficiency electrocatalyst. Inorganic Chemistry Frontiers, 2022, 9(24): 6412. |
[45] | DU H, GUO H, WANG K, et al. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angewandte Chemie International Edition, 2023, 62(5): e202215782. |
[46] | DONG S, NIU A, WANG K, et al. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Applied Catalysis B: Environmental, 2023, 333: 122772. |
[47] | LI T, TANG C, GUO H, et al. In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765. |
[48] | FAN X, XIE L, LIANG J, et al. In situ grown Fe3O4 particle on stainless steel: a highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15(4): 3050. |
[49] |
WANG J, WANG Y, CAI C, et al. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Letters, 2023, 23(5): 1897.
DOI PMID |
[50] | WANG Y, LIU C, ZHANG B, et al. Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi- dehydrogenation. Science China Materials, 2020, 63(12): 2530. |
[51] | ZHOU N, WANG Z, ZHANG N, et al. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catalysis, 2023, 13(11): 7529. |
[52] | XIAO L, DAI W, MOU S, et al. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy & Environmental Science, 2023, 16(6): 2696. |
[53] | KANI N C, NGUYEN N H L, MARKEL K, et al. Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia. Advanced Energy Materials, 2023, 13(17): 2204236. |
[54] | CHEN W, CHEN Z, HUANG Z, et al. Modulating the valence electronic structure of Co3O4 to improve catalytic activity of electrochemical nitrate-to-ammonia conversion. Science China Materials, 2023, 66(10): 3901. |
[55] | NIU Z, FAN S, LI X, et al. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chemical Engineering Journal, 2023, 451: 138890. |
[56] | CUI Y, DONG A, ZHOU Y, et al. Interfacially engineered nanoporous Cu/MnOx hybrids for highly efficient electrochemical ammonia synthesis via nitrate reduction. Small, 2023, 19(17): 2207661. |
[57] | XU Y, SHENG Y, WANG M, et al. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core-shell hierarchical nanoarrays. Journal of Materials Chemistry A, 2022, 10(32): 16883. |
[58] | CAO Y, GUO R, MA M, et al. Effects of electron density variation of active sites in CO2 activation and photoreduction: a review. Acta Physico-Chimica Sinica, 2024, 40(1): 2303029. |
[59] | ZHANG Z, BIAN L, TIAN H, et al. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small, 2022, 18(18): 2107450. |
[60] | WANG Y, QIN Y, LI W, et al. Controllable NO release for catheter antibacteria from nitrite electroreduction over the Cu-MOF. Transactions of Tianjin University, 2023, 29(4): 275. |
[61] | POLO-GARZON F, BAO Z, ZHANG X, et al. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catalysis, 2019, 9(6): 5692. |
[62] | WANG C, LIU Z, LI C, et al. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. Chinese Science Bulletin, 2021, 66(34): 4411. |
[63] | WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angewandte Chemie International Edition, 2020, 59(13): 5350. |
[64] | ZHANG S, LI M, LI J, et al. High-ammonia selective metal- organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proceedings of the National Academy of Sciences, 2022, 119(6): e2115504119. |
[65] | WANG Z, WEN B, HAO Q, et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146. |
[66] | JIA X, LI J Y, DING S H, et al. Synergy effect of Pd nanoparticles and oxygen vacancies for enhancing TiO2 photocatalytic CO2 reduction. Journal of Inorganic Materials, 2023, 38(11): 1301. |
[67] | WAN J, CHEN W, JIA C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30(11): 1705369. |
[68] | FENG T, LI F, HU X, et al. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chinese Chemical Letters, 2023, 34(5): 107862. |
[69] | FAN X, ZHAO D, DENG Z, et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small, 2023, 19(17): 2208036. |
[70] | ZHAO X E, LI Z, GAO S, et al. CoS2@TiO2 nanoarray: a heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chemical Communications, 2022, 58(93): 12995. |
[71] | HE X, LI J, LI R, et al. Ambient ammonia synthesis via nitrate electroreduction in neutral media on Fe3O4 nanoparticles-decorated TiO2 nanoribbon array. Inorganic Chemistry, 2023, 62(1): 25. |
[72] | ZHAO Q, SONG A, DING S, et al. Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Advanced Materials, 2020, 32(50): 2002450. |
[73] | WANG P, JIN Z, CHEN N, et al. Theoretical investigation of Mo doped α-MnO2 electrocatalytic oxygen evolution reaction. Journal of Inorganic Materials, 2022, 37(5): 541. |
[74] | ZHANG X, WU D, LIU X, et al. Efficient electrocatalytic chlorine evolution under neutral seawater conditions enabled by highly dispersed Co3O4 catalysts on porous carbon. Applied Catalysis B: Environmental, 2023, 330: 122594. |
[75] |
WU J, WANG X, ZHENG W, et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. Journal of the American Chemical Society, 2022, 144(41): 19163.
DOI PMID |
[76] | HU Z, HAO L, QUAN F, et al. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 2022, 12(2): 436. |
[77] | LU D, LIU T, HAN J, et al. Yolk-shell composite oxides with binuclear Co(II) sites toward low-overpotential nitrate reduction to ammonia. Chemical Engineering Journal, 2023, 477: 146896. |
[78] | PARASHTEKAR A, BOURGEOIS L, TATIPARTI S S V. Grain boundary segregation of nickel vacancies and space charge zone formation in NiO through interactions among Ni2+, O2-, and Ni3+. Materials Letters, 2023, 349: 134743. |
[79] |
LI B, ZHANG Q, XIAO J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition. Journal of Inorganic Materials, 2022, 37(1): 45.
DOI |
[80] | ZHANG R, WANG Y, OU B, et al. α-Ni(OH)2 surface hydroxyls synergize Ni3+ sites for catalytic formaldehyde oxidation. Journal of Inorganic Materials, 2023, 38(10): 1216. |
[81] | ZHU H, TANG Y, WANG J J, et al. Accelerating electrosynthesis of ammonia from nitrates using coupled NiO/Cu nanocomposites. Chemical Communications, 2024, 60(16): 2184. |
[82] | WANG Y, LI H, ZHOU W, et al. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angewandte Chemie International Edition, 2022, 61(19): e202202604. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[3] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[4] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[5] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[6] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[7] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[8] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[9] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[10] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[11] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[12] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||