Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 104-110.DOI: 10.15541/jim20240279
Previous Articles Next Articles
FENG Guanzheng1,2,3(), YANG Jian1,2, ZHOU Du1,2, CHEN Qiming1,2,3, XU Wentao1,2, ZHOU Youfu1,2(
)
Received:
2024-06-07
Revised:
2024-09-02
Published:
2025-01-20
Online:
2024-09-02
Contact:
ZHOU Youfu, professor. E-mail: yfzhou@fjirsm.ac.cnAbout author:
FENG Guanzheng (1998-), male, Master candidate. E-mail: fengguanzheng01@163.com
Supported by:
CLC Number:
FENG Guanzheng, YANG Jian, ZHOU Du, CHEN Qiming, XU Wentao, ZHOU Youfu. Mechanism for Hydrothermal-carbothermal Synthesis of AlN Nanopowders[J]. Journal of Inorganic Materials, 2025, 40(1): 104-110.
Phase | Surface energy/ (J·m-2) | Ref. | Method |
---|---|---|---|
α-Al2O3 | 2.04 | [ | MD simulation |
2.64 | [ | High-temperature calorimetry | |
2.57 | [ | Static lattice calculation | |
2.03 | [ | MD simulation | |
4.89 | [ | Ab initio calculation | |
γ-Al2O3 | 0.79 | [ | MD simulation |
1.66 | [ | High-temperature calorimetry | |
1.53 | [ | High-temperature calorimetry |
Table 1 Compilation of measured and calculated surface energies in literature
Phase | Surface energy/ (J·m-2) | Ref. | Method |
---|---|---|---|
α-Al2O3 | 2.04 | [ | MD simulation |
2.64 | [ | High-temperature calorimetry | |
2.57 | [ | Static lattice calculation | |
2.03 | [ | MD simulation | |
4.89 | [ | Ab initio calculation | |
γ-Al2O3 | 0.79 | [ | MD simulation |
1.66 | [ | High-temperature calorimetry | |
1.53 | [ | High-temperature calorimetry |
Fig. 5 (a) Gibbs free energy of the transformation from γ-Al2O3 to α-Al2O3 at different temperatures calculated as a function of specific surface area, and (b) N2 adsorption-desorption isotherm of γ-Al2O3 with inset showing pore size distribution determined by application of BJH method to the isotherm
Fig. S3 (a, b) Survey spectra of the precursors at (a) Al : U : C=1 : 2 : 0 and (b) Al : U : C=1 : 2 : 4; (c-f) XPS spectra of (c) Al2s, (d) C1s, (e) O1s, and (f) N1s for the precursors at Al : U : C=1 : 2 : 4
[1] | YIM W M, PAFF R J. Thermal expansion of AlN, sapphire, and silicon. Journal of Applied Physics, 1974, 45(3): 1456. |
[2] | SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641. |
[3] | SELVADURAY G, SHEET L. Aluminium nitride: review of synthesis methods. Materials Science & Technology, 1993, 9(6): 463. |
[4] | RUTKOWSKI P J, KATA D. Thermal properties of AlN polycrystals obtained by pulse plasma sintering method. Journal of Advanced Ceramics, 2013, 2(2): 180. |
[5] | SHEPPARD L M. Aluminum nitride: a versatile but challenging material. American Ceramic Society Bulletin, 1990, 69(11): 1801. |
[6] | BAIK Y, DREW R A L. Aluminum nitride: processing and applications. Key Engineering Materials, 1996, 122: 553. |
[7] | LEE H M, BHARATHI K, KIM D K. Processing and characterization of aluminum nitride ceramics for high thermal conductivity. Advanced Engineering Materials, 2014, 16(6): 655. |
[8] | CHIKAMI H, FUKUSHIMA J, HAYASHI Y, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature. Journal of the American Ceramic Society, 2018, 101(11): 4905. |
[9] | WANG Y M, QIAO L, ZHENG J W, et al. Preparation of AlN with low agglomeration using polyethylene glycol and emulsifier to disperse the ultrafine raw powders. Ceramics International, 2023, 49(1): 1390. |
[10] | KOMEYA K, MATSUKAZE N, MEGURO T. Synthesis of AlN by direct nitridation of Al alloys. Journal of the Ceramic Society of Japan, 1993, 101(1180): 1319. |
[11] | KIMURA I, ICHIYA K, ISHII M, et al. Synthesis of fine AlN powder by a floating nitridation technique using an N2/NH3 gas mixture. Journal of Materials Science Letters, 1989, 8(3): 303. |
[12] | WEI Z L, LI K, GE B Z, et al. Synthesis of nearly spherical AlN particles by an in-situ nitriding combustion route. Journal of Advanced Ceramics, 2021, 10(2): 291. |
[13] | YAMAKAWA T, TATAMI J, WAKIHARA T, et al. Synthesis of AlN nanopowder from γ-Al2O3 by reduction-nitridation in a mixture of NH3-C3H8. Journal of the American Ceramic Society, 2006, 89(1): 171. |
[14] | ZHANG Q H, GAO L. Synthesis of nanocrystalline aluminum nitride by nitridation of δ-Al2O3 nanoparticles in flowing ammonia. Journal of the American Ceramic Society, 2006, 89(2): 415. |
[15] | KIM J K, JUNG W S. Nitridation of δ-alumina to aluminum nitride under a flow of ammonia and its mechanism. Journal of the Ceramic Society of Japan, 2011, 119(1389): 351. |
[16] | JUNG W S. Synthesis of aluminum nitride powder from δ-alumina nanopowders under a mixed gas flow of nitrogen and hydrogen. Ceramics International, 2012, 38(1): 871. |
[17] | YOSHIMURA M, BYRAPPA K. Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 2008, 43(7): 2085. |
[18] | WANG Q, LI H, CHEN L Q, et al. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39(14): 2211. |
[19] |
GONG Y T, XIE L, LI H R, et al. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant. Chemical Communications, 2014, 50(84): 12633.
DOI PMID |
[20] | CHEN W, LI D, TIAN L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chemistry, 2018, 20(19): 4438. |
[21] | XIANG M, ZHOU Y, XU W, et al. Hydrothermal-carbothermal synthesis of highly sinterable AlN nanopowders. Journal of the American Ceramic Society, 2017, 100(6): 2482. |
[22] | XIANG M, ZHOU Y F, XU W T, et al. Transparent AlN ceramics sintered from nanopowders produced by the wet chemical method. Journal of the Ceramic Society of Japan, 2018, 126(4): 241. |
[23] | YANG J, CONG Y, LING J R, et al. Preparation of transparent AlON from powders synthesized by novel CRN method. Journal of the European Ceramic Society, 2022, 42(3): 935. |
[24] | FANKHÄNEL J, SILBERNAGL D, GHASEM Z K M, et al. Mechanical properties of boehmite evaluated by atomic force microscopy experiments and molecular dynamic finite element simulations. Journal of Nanomaterials, 2016, 2016(1): 5017213. |
[25] | WU J, XU W, DONG T, et al. Self-assembly of graphene reinforced ZrO2 composites with deformation-sensing performance. Ceramics International, 2022, 48(21): 32131. |
[26] | ANSI V A, SREELAKSHMI P, RAVEENDRAN P, et al. Table sugar derived carbon dot—a promising green reducing agent. Materials Research Bulletin, 2021, 139: 111284. |
[27] | YANG J, WANG L H, JIANG X X, et al. AlN nanoparticles prepared through a gelation-polymerization process. Ceramics International, 2020, 46(11): 17486. |
[28] | HE Q, QIN M L, HUANG M, et al. Mechanism and kinetics of combustion-carbothermal synthesis of AlN nanopowders. Ceramics International, 2017, 43(12): 8755. |
[29] | MAO X X, XU Y G, MAO X J, et al. Synthesis of fine AlN powders by foamed precursor-assisted carbothermal reduction- nitridation method. Journal of Inorganic Materials, 2019, 34(10): 1123. |
[30] | CARSTENS S, MEYER R, ENKE D. Towards macroporous α-Al2O3—routes, possibilities and limitations. Materials, 2020, 13(7): 1787. |
[31] | CESTEROS Y, SALAGRE P, MEDINA F, et al. Several factors affecting faster rates of gibbsite formation. Chemistry of Materials, 1999, 11(1): 123. |
[32] | MCHALE J M, NAVROTSKY A, PERROTTA A J. Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. The Journal of Physical Chemistry B, 1997, 101(4): 603. |
[33] | MCHALE J M, AUROUX A, PERROTTA A J, et al. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science, 1997, 277(5327): 788. |
[34] | BLONSKI S, GAROFALINI S H. Molecular dynamics simulations of α-alumina and γ-alumina surfaces. Surface Science, 1993, 295(1/2): 263. |
[35] | TASKER P W. Surfaces of magnesia and alumina. Advances in Ceramics, 1984, 10: 176. |
[36] | MACKRODT W C, DAVEY R J, BLACK S N, et al. The morphology of α-Al2O3 and α-Fe2O3: the importance of surface relaxation. Journal of Crystal Growth, 1987, 80(2): 441. |
[37] | CAUSÀ M, DOVESI R, PISANI C, et al.Ab initio characterization of the (0001) and (101̄0) crystal faces of α-alumina. Surface Science, 1989, 215(1/2): 259. |
[38] | CASTRO R H R, USHAKOV S V, GENGEMBRE L, et al. Surface energy and thermodynamic stability of γ-alumina: effect of dopants and water. Chemistry of Materials, 2006, 18(7): 1867. |
[39] | TSUGE A, INOUE H, KASORI M, et al. Raw material effect on AIN powder synthesis from Al2O3 carbothermal reduction. Journal of Materials Science, 1990, 25(5): 2359. |
[1] | ZHANG Li, GUAN Haoyang, ZHENG Qining, HONG Zhiliang, WANG Jiaxuan, XING Ning, LI Mei, LIU Yongsheng, ZHANG Chengyu. Creep Properties and Damage Mechanisms of SiCf/SiC-SiYBC Prepared by Melt Infiltration [J]. Journal of Inorganic Materials, 2025, 40(1): 23-30. |
[2] | WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing [J]. Journal of Inorganic Materials, 2025, 40(1): 31-38. |
[3] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[4] | HE Zongbei, CHEN Fang, LIU Dianguang, LI Tongye, ZENG Qiang. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501-508. |
[5] | CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio [J]. Journal of Inorganic Materials, 2024, 39(5): 509-516. |
[6] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[7] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[8] | KONG Jianfeng, HUANG Jiecheng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on DPEPA-derived Gel Polymer Electrolyte [J]. Journal of Inorganic Materials, 2024, 39(12): 1331-1338. |
[9] | GOU Yanzi, KANG Weifeng, ZHANG Qingyu. Preparation of Nearly Stoichiometric SiC(Ti) Fibers with Highly Crystalline Microstructure from Polytitanocarbosilane [J]. Journal of Inorganic Materials, 2024, 39(12): 1377-1383. |
[10] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[11] | MA Yongjie, LIU Yongsheng, GUAN Kang, ZENG Qingfeng. Gas-phase Kinetic Study of Pyrolysis in the System of CH4+C2H5OH+Ar [J]. Journal of Inorganic Materials, 2024, 39(11): 1235-1244. |
[12] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[13] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[14] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[15] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||