Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1197-1204.DOI: 10.15541/jim20240138
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHOU Zezhu1(), LIANG Zihui1,2, LI Jing1(
), WU Congcong1(
)
Received:
2024-03-21
Revised:
2024-06-17
Published:
2024-11-20
Online:
2024-07-03
Contact:
WU Congcong, professor. E-mail: ccwu@hubu.edu.cn;About author:
ZHOU Zezhu (1995-), male, PhD candidate. E-mail: zhouzezhu@stu.hubu.edu.cn
Supported by:
CLC Number:
ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents[J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204.
Fig. 1 Surface morphologies and phase structures of PVK-0PbCl2 and PVK-5PbCl2 (a, b) SEM images of PVK-0PbCl2 and PVK-5PbCl2; (c) EDS mappings of PVK-5PbCl2; (d) Histogram of particle size distribution; (e) XRD patterns of PVK-0PbCl2 and PVK-5PbCl2; (f) UV-Vis absorption spectra of PVK-0PbCl2 and PVK-5PbCl2 Colorful figures are available on website
Fig. 2 Photovoltaic properties of PVK-0PbCl2 and PVK-5PbCl2 (a) PL spectra; (b) TRPL spectra; (c) SCLC curves; (d) Dark state J-V curves; (e) Conductivity; (f) Nyquist plots Colorful figures are available on website
Fig. 3 Photovoltaic performance of PSCs with different PbCl2 additions (a) Schematic diagram and cross-sectional SEM image of PSC; (b1-b4) Photovoltaic parameters of PSCs with different PbCl2 additions; (c) Forward and reverse sweep J-V curves of PSC-0PbCl2 and PSC-5PbCl2; (d) EQE spectra of PSC-5PbCl2; (e) SPO curves of PSC-5PbCl2; (f) Stability tests of PSC-0PbCl2 and PSC-5PbCl2
Fig. 4 Photovoltaic performance of 5 cm×5 cm PSM and uniformity of large-area perovskite film (a) Structure diagram and physical images; (b) I-V and P-V curves of the PSM with champion efficiency; (c) SPO curve; (d) UV-Vis absorption spectra and (e) XRD patterns of different sub-films; (f) PL intensity distribution mapping. Colorful figures are available on website
Sample | PCE/% | FF/% | VOC/V | JSC/(mA·cm-2) | |
---|---|---|---|---|---|
PSC-0PbCl2 | Average | 18.26 | 74.26 | 1.04 | 23.48 |
Champion | 19.31 | 77.40 | 1.02 | 24.35 | |
PSC-2.5PbCl2 | Average | 19.11 | 75.87 | 1.07 | 23.65 |
Champion | 20.17 | 76.70 | 1.08 | 24.03 | |
PSC-5PbCl2 | Average | 20.35 | 77.72 | 1.08 | 24.20 |
Champion | 21.21 | 79.70 | 1.08 | 24.72 | |
PSC-7.5PbCl2 | Average | 19.23 | 76.25 | 1.07 | 23.61 |
Champion | 20.37 | 78.10 | 1.08 | 24.21 |
Table S1 Photovoltaic parameters of PSCs with different PbCl2 additions
Sample | PCE/% | FF/% | VOC/V | JSC/(mA·cm-2) | |
---|---|---|---|---|---|
PSC-0PbCl2 | Average | 18.26 | 74.26 | 1.04 | 23.48 |
Champion | 19.31 | 77.40 | 1.02 | 24.35 | |
PSC-2.5PbCl2 | Average | 19.11 | 75.87 | 1.07 | 23.65 |
Champion | 20.17 | 76.70 | 1.08 | 24.03 | |
PSC-5PbCl2 | Average | 20.35 | 77.72 | 1.08 | 24.20 |
Champion | 21.21 | 79.70 | 1.08 | 24.72 | |
PSC-7.5PbCl2 | Average | 19.23 | 76.25 | 1.07 | 23.61 |
Champion | 20.37 | 78.10 | 1.08 | 24.21 |
Sample | EQEEL/% | ∆VOC/V* |
---|---|---|
PSC-0PbCl2 | 1.03×10-4 | 0.268 |
PSC-5PbCl2 | 2.02×10-5 | 0.226 |
Table S2 VOC loss analysis of PSC-0PbCl2 and PSC-5PbCl2
Sample | EQEEL/% | ∆VOC/V* |
---|---|---|
PSC-0PbCl2 | 1.03×10-4 | 0.268 |
PSC-5PbCl2 | 2.02×10-5 | 0.226 |
Ref. | Year | PCEPSC/% | PCEPSM/% |
---|---|---|---|
[S1] | 2015 | 15.1 | - |
[S2] | 2017 | 19.0 | - |
[S3] | 2017 | 15.9 | - |
[S4] | 2018 | 16.32 | - |
[S5] | 2019 | 17.82 | - |
[S6] | 2019 | 18.4 | - |
[S7] | 2020 | 23.1 | - |
[S8] | 2020 | 20.78 | - |
[S9] | 2021 | 19.67 | - |
[S10] | 2022 | 19.6 | - |
[S11] | 2022 | 19.14 | 17.12 (15 cm2) |
[S12] | 2023 | 21.04 | 19.03 (70 cm2) |
This work | 2024 | 21.21 | 18.89 (14.88 cm2) |
Table S3 Comparison of the reported photovoltaic performance of MA/ACN solvent system PSCs/PSM
Ref. | Year | PCEPSC/% | PCEPSM/% |
---|---|---|---|
[S1] | 2015 | 15.1 | - |
[S2] | 2017 | 19.0 | - |
[S3] | 2017 | 15.9 | - |
[S4] | 2018 | 16.32 | - |
[S5] | 2019 | 17.82 | - |
[S6] | 2019 | 18.4 | - |
[S7] | 2020 | 23.1 | - |
[S8] | 2020 | 20.78 | - |
[S9] | 2021 | 19.67 | - |
[S10] | 2022 | 19.6 | - |
[S11] | 2022 | 19.14 | 17.12 (15 cm2) |
[S12] | 2023 | 21.04 | 19.03 (70 cm2) |
This work | 2024 | 21.21 | 18.89 (14.88 cm2) |
[1] |
AKIHIRO K, KENJIRO T, YASUO S, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.
DOI PMID |
[3] | KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302. |
[4] | National Renewable Energy Laboratory. Best research-cell efficiency chart. [2024-04-04]. https://www.nrel.gov/pv/cell-efficiency.html. |
[5] | YANG Y, LIU C, DING Y, et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nature Energy, 2024, 9(3): 316. |
[6] | LI M, ZHU Z, WANG Z, et al. High-quality hybrid perovskite thin films by post-treatment technologies in photovoltaic applications. Advanced Materials, 2023, 36(7): 2309428. |
[7] | HUI Z, XU Z, ZHU C, et al. Progress on Large-area organic- inorganic hybrid perovskite films and its photovoltaic application. Journal of Inorganic Materials, 2024, 39(5): 457. |
[8] | LI D, ZHANG D, LIM K S, et al. A review on scaling up perovskite solar cells. Advanced Functional Materials, 2021, 31(12): 2008621. |
[9] | CHEN C, GAO J, FENG S P. The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent. International Materials Reviews 2023, 68(3): 301. |
[10] |
TAYLOR A D, SUN Q, GOETZ K P, et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 2021, 12: 1878.
DOI PMID |
[11] | CHOI H, CHOI K, CHOI Y, et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods, 2019, 4(5): 1900569. |
[12] | NG A, REN Z, HU H, et al. A Cryogenic process for antisolvent- free high-performance perovskite solar cells. Advanced Materials, 2018, 30(44): 1804402. |
[13] | CASSELLA E J, SPOONER E L K, SMITH J A, et al. Binary solvent system used to fabricate fully annealing-free perovskite solar cells. Advanced Energy Materials, 2023, 13(11): 2203468. |
[14] | LIANG Z, SHI Y, YUAN T, et al. Distinct reaction route toward high photovoltaic performance: perovskite salts versus crystals. ACS Applied Energy Materials, 2023, 6(4): 2247. |
[15] | WU C, WANG K, LI J, et al. Volatile solution: the way toward scalable fabrication of perovskite solar cells? Matter, 2021, 4(3): 775. |
[16] | WU C, WANG K, YAN Y, et al. Fullerene polymer complex inducing dipole electric field for stable perovskite solar cells. Advanced Functional Materials, 2019, 29(12): 1804419. |
[17] |
CHEN Q, ZHOU H, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, 2014, 14(7): 4158.
DOI PMID |
[18] | CHEN Y, MENG Q, XIAO Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Applied Materials & Interfaces, 2019, 11(47): 44101. |
[19] | GAO B, HU J, ZUO Z, et al. Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells. ACS Applied Materials & Interfaces, 2022, 14(35): 40062. |
[20] | GAO Y, LIU C, XIE Y, et al. Can nanosecond laser achieve high- performance perovskite solar modules with aperture area efficiency over 21%? Advanced Energy Materials, 2022, 12(41): 2202287. |
[21] | XIE Y, DUAN J, PENG L, et al. Understanding the mechanism of PbCl2 Additive for MAPbI3-based perovskite solar cells. Advanced Photonics Research, 2021, 2(8): 2100012 |
[22] | LING X, GUO J, SHEN C, et al. High-throughput deposition of recyclable SnO2 electrodes toward efficient perovskite solar cells. Small, 2023, 20(18): 2308579. |
[23] | JIN B, MING Y, WU Z, et al. Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 2022, 94: 106936. |
[24] | ZHAO J J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2021, 41(1): 96. |
[25] | DAI X, ZHANG L, QIAN Y, et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering. Journal of Inorganic Materials, 2023, 38(9): 1089. |
[26] | CHENG J, CHOI I, KIM W, et al. Wide-band-gap (2.0 eV) perovskite solar cells with a VOC of 1.325 V fabricated by a green- solvent strategy. ACS Applied Materials & Interfaces, 2023, 15(19): 23077. |
[27] | JIANG X, ZHANG B, YANG G, et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, 2023, 62(22): e202302462. |
[28] |
LI C, WANG X, BI E, et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 2023, 379(6633): 690.
DOI PMID |
[29] | CHEN S, YU X, CAI X, et al. PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells. RSC Advances, 2016, 6(1): 648. |
[30] | WANG P, ZHAO J, LIU J, et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339: 51. |
[31] |
DING T, FENG P, SUN X, et al. Perovskite film passivated by Fmoc-FF-OH and its photovoltaic performance. Journal of Inorganic Materials, 2023, 38(9): 1076.
DOI |
[32] | GALATOPOULOS F, SAVVA A, PAPADAS I T, et al. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 2017, 5(7): 076102. |
[33] | HAILEGNAW B, SARICIFTCI N S, SCHARBER M C. Impedance spectroscopy of perovskite solar cells: studying the dynamics of charge carriers before and after continuous operation. Physica Status Solidi (A) - Applications and Materials Science, 2020, 217(22): 2000291. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[6] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[7] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[11] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[12] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[13] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||