Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (3): 225-244.DOI: 10.15541/jim20240401
• REVIEW • Next Articles
CHEN Guangchang1(), DUAN Xiaoming2, ZHU Jinrong1, GONG Qing1, CAI Delong3, LI Yuhang4, YANG Donglei1, CHEN Biao1, LI Xinmin1, DENG Xudong1, YU Jin1, LIU Boya1, HE Peigang2, JIA Dechang2(
), ZHOU Yu2,5
Received:
2024-09-05
Revised:
2024-11-14
Published:
2025-03-20
Online:
2025-03-12
Contact:
JIA Dechang, professor. E-mail: dcjia@hit.edu.cnAbout author:
CHEN Guangchang (1983-), male, PhD, professor. E-mail: chengc004@avic.com
CLC Number:
CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect[J]. Journal of Inorganic Materials, 2025, 40(3): 225-244.
Brand | Type | Supplier |
---|---|---|
Reaction sintering ceramic | Bullet-proof ceramic | M Cubed Technologies |
AlON | Transparent bullet-proof ceramic | Surmet |
Flexible hybrid system | Silicon-based ceramic | American Semiconductor |
Gentoo | Sol-Gel coating | Luna Innovations |
Table 1 Brands and suppliers of advanced ceramics[40⇓⇓-43]
Brand | Type | Supplier |
---|---|---|
Reaction sintering ceramic | Bullet-proof ceramic | M Cubed Technologies |
AlON | Transparent bullet-proof ceramic | Surmet |
Flexible hybrid system | Silicon-based ceramic | American Semiconductor |
Gentoo | Sol-Gel coating | Luna Innovations |
Material | AlON | MgAl2O3 | Bullet-proof glass |
---|---|---|---|
Density/(g·cm-3) | 3.69 | 3.58 | 2.50 |
Young modulus/GPa | 334 | 238 | 72 |
Bending strength/MPa | 220-550 | 180-450 | 50-55 |
Knoop hardness/GPa | 14-18 | 12-15 | 5.0-5.5 |
Table 2 Performance comparison for typical transparent bullet-proof ceramics[52⇓⇓-55]
Material | AlON | MgAl2O3 | Bullet-proof glass |
---|---|---|---|
Density/(g·cm-3) | 3.69 | 3.58 | 2.50 |
Young modulus/GPa | 334 | 238 | 72 |
Bending strength/MPa | 220-550 | 180-450 | 50-55 |
Knoop hardness/GPa | 14-18 | 12-15 | 5.0-5.5 |
Fig. 6 Photos of AlON transparent bullet-proof ceramics after firing practice (12.7 mm armored incendiary bomb)[57] (a) Front face of test piece; (b) Back face of test piece
Material | Al2O3f/ Al2O3 | SiCf/SiC | High temperature alloy |
---|---|---|---|
Density/(g·cm-3) | 2.6-2.8 | 2.5-2.9 | 8-9 |
Oxidation resistance | Good | Moderate | Low |
Cost | Low | Moderate | Moderate |
Temperature resistance/℃ | 1100 | 1200 | 1050 |
Table 3 Performance comparison for ceramic composites and high temperature alloys[68-69]
Material | Al2O3f/ Al2O3 | SiCf/SiC | High temperature alloy |
---|---|---|---|
Density/(g·cm-3) | 2.6-2.8 | 2.5-2.9 | 8-9 |
Oxidation resistance | Good | Moderate | Low |
Cost | Low | Moderate | Moderate |
Temperature resistance/℃ | 1100 | 1200 | 1050 |
Type | Electromagnetic | Electrostatic | Piezoelectric |
---|---|---|---|
Energy density/ (mJ·cm-3) | 24.8 | 4 | 35.4 |
Assumption | 0.25 T magnetic field | 3´107 V·m-1 electric field | PZT 5H material |
Table 4 Comparison of energy density for three major vibration energy harvesters[99]
Type | Electromagnetic | Electrostatic | Piezoelectric |
---|---|---|---|
Energy density/ (mJ·cm-3) | 24.8 | 4 | 35.4 |
Assumption | 0.25 T magnetic field | 3´107 V·m-1 electric field | PZT 5H material |
Area or site | Structure component | Demand for advanced ceramic material |
---|---|---|
Energy impact protection areas | High energy impact protection components, such as occupant seats | Reaction bonding of complex-shaped and monolithic opaque armor ceramics, transparent polycrystal armor ceramics |
Low energy impact protection components, such as leading edge of rotor blades | Compound coating of metal and ceramics | |
Heat energy impact protection components, such as engine cowling | Hybrid ceramic matrix composite/polymer matrix composite materials | |
Energy conversion sites | Mechanical and electrical energy conversion components, such as smarting rotor | Flexible hybrid electronic-structural composites |
Electromagnetic and heat energy conversion components, such as rotor blades | Microwave-absorbing ceramic composites made of polymer-derived ceramics | |
Corrosion protection areas | Landing gear sleeves | High-performance Sol-Gel coating |
Table 5 Demands for advanced ceramic materials in specific structural components
Area or site | Structure component | Demand for advanced ceramic material |
---|---|---|
Energy impact protection areas | High energy impact protection components, such as occupant seats | Reaction bonding of complex-shaped and monolithic opaque armor ceramics, transparent polycrystal armor ceramics |
Low energy impact protection components, such as leading edge of rotor blades | Compound coating of metal and ceramics | |
Heat energy impact protection components, such as engine cowling | Hybrid ceramic matrix composite/polymer matrix composite materials | |
Energy conversion sites | Mechanical and electrical energy conversion components, such as smarting rotor | Flexible hybrid electronic-structural composites |
Electromagnetic and heat energy conversion components, such as rotor blades | Microwave-absorbing ceramic composites made of polymer-derived ceramics | |
Corrosion protection areas | Landing gear sleeves | High-performance Sol-Gel coating |
[1] | HWANG C, DU J, YANG Q R, et al. Addressing amorphization and transgranular fracture of B4C through Si doping and TiB2 microparticle reinforcing. Journal of the American Ceramic Society, 2022, 105(5): 2959. |
[2] | SHEN Y D, YANG M Y, GODDARD W A, et al. Strengthening boron carbide by doping Si into grain boundaries. Journal of the American Ceramic Society, 2022, 105(5): 2978. |
[3] | YANG Q R, ÇELIK A M, DU J, et al. Advancing the mechanical properties of Si/B Co-doped boron carbide through TiB2 reinforcement. Materials Letters, 2020, 266: 127480. |
[4] | GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging. NDT & E International, 2022, 129: 102636. |
[5] | GAO J L, KEDIR N, KIRK C D, et al. High-speed synchrotron X-ray phase-contrast imaging for evaluating microscale damage mechanisms and tracking cracking behaviors inside cross-ply GFRCs. Composites Science and Technology, 2021, 210: 108814. |
[6] | PRAMEELA S E, YI P, HOLLENWEGER Y, et al. Strengthening magnesium by design: integrating alloying and dynamic processing. Mechanics of Materials, 2022, 167: 104203. |
[7] | University of Bristol. Shape Adaptive Blades for Rotorcraft Efficiency--SABRE project. (2021-04-13)[2024-11-13]. https://sabreproject.eu. |
[8] | Hybrid ceramic matrix composites/polymer matrix composite skin materials. Triton Systems Inc. Department of the Navy SBIR/STTR Transition Program. ONR Approval#43-8692-21. |
[9] | HAYUN S. Reaction-bonded boron carbide for lightweight armor: the interrelationship between processing, microstructure, and mechanical properties. American Ceramic Society Bulletin, 2017, 96(6): 20. |
[10] | RAMISETTY M, SASTRI S, KASHALIKAR U, et al. Transparent polycrystalline cubic spinels protect and defend. American Ceramic Society Bulletin, 92(2): 20. |
[11] | RUSSELL K, GERSTNER N, KRAMMER M, et al. CH-53K heavy lift helicopter--a survivability focused design. American Helicopter Society International Annual Forum, Virgina, 2011. |
[12] | MARTIN R, GOFF A, KOENE B, et al.Durable, hydrophobic surface treatment for enhanced corrosion protection of landing gear. DOD-Allied Nations Technical Corrosion Conference, Virgina, 2022: 19611. |
[13] | ZELENIKA S, HADAS Z, BADER S, et al. Energy harvesting technologies for structural health monitoring of airplane components--a review. Sensors, 2020, 20(22): 6685. |
[14] | LEE H, ZHANG S J, BAR-COHEN Y, et al. High temperature, high power piezoelectric composite transducers. Sensors, 2014, 14(8): 14526. |
[15] | SINEM S M, LEVENT U.Vibration reduction in a helicopter using active twist rotor blade method. 7th European Conference for Aeronautics and Space Sciences, Saïx, 2017. |
[16] | ZHU D M. Aerospace ceramic materials: thermal, environmental barrier coatings and SiC/SiC ceramic matrix composites for turbine engine applications. (2018-05-01)[2024-11-13]. https://ntrs.nasa.gov/citations/20180002984. |
[17] | 邓景辉. 直升机技术发展与展望. 航空科学技术, 2021, 32(1): 10. |
[18] | DARMSTADT P R, ROBUCK M J, MOORE R F, et al.Composites for advanced drive system, a systems analysis--revolutionary vertical lift technology (RVLT). NASA/CR—2019-220237. |
[19] | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想. 空气动力学学报, 2021, 39(3): 1. |
[20] | 吕春雷, 黄利. 下一代直升机技术发展方向研究. 航空制造技术, 2016, 59(8): 51. |
[21] | HISCHBERG M.The future of vertical flight. 75th American Helicopter Society Annual Forum, Pennsylvania, 2019. |
[22] | 宋焕成, 梁志勇, 张佐光. 武装直升机与陶瓷/复合材料装甲. 航空制造工程, 1994(9): 9. |
[23] | MARRONE A, ROCCA G L. Future military helicopters: technological innovation and lessons learned from Ukraine. Istituto Affari Internazionali, Rome . |
[24] | 陈晓楠, 韩志文, 褚世永. 俄乌冲突中俄空天军直升机运用对直升机装备建设的启示. 指挥控制与仿真, 2023, 45(6): 19. |
[25] | WILLIAM A. Rotary wing (RW) mishaps in DVE: latest statistics. EN-HFM-265-01. Florida, NATO Science and Technology Organization, 2017. |
[26] | NAMPY S N, SMITH E, BAKIS C.Advanced grid-stiffened composite shells for heavy-lift helicopter blade spars. 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston, 2014. |
[27] | MESTRE V, SCHOMER P, LIU K. Helicopter noise information for airports and communities. Washington: National Academies Press, 2016. |
[28] | 路录祥, 王江河.直升机降噪技术. 第十六届全国直升机年会, 南京, 2000. |
[29] | FULLER R M. Adaptive noise reduction techniques for airborne acoustic sensors. Dayton: Wright State University, 2012. |
[30] | 刘芙群, 顾仲权. 智能旋翼——直升机减振降噪的治本技术. 国际航空, 2001(8): 24. |
[31] | 刘孝辉, 徐新喜, 白松, 等. 军用直升机振动与噪声控制技术. 直升机技术, 2013(1): 67. |
[32] | 冯剑波, 陆洋. 直升机旋翼桨涡干扰噪声主动控制技术综述. 噪声与振动控制, 2018, 38(3): 1. |
[33] | KIM J, LEE J K. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. The Journal of the Acoustical Society of America, 2002, 112(3): 990. |
[34] | SOU U T. Investigation into the effects of blade tip twist on noise reduction for a NACA 0012 rotor blade. McNair Research Journal SJSU, 2019, 15(1): 121. |
[35] | LEIF A.Damage tolerance and durability of structural power composites. AFRL-AFOSR-UK-TR-2021-0013. |
[36] | 刘天一, 张汉鸿, 杨禹. 高耐热陶瓷涂覆锂离子电池隔膜研究进展. 广东化工, 2021, 48(8): 137. |
[37] | 崔腾飞, 高蒙, 胡建清, 等. 海洋环境对直升机基础产品腐蚀行为影响研究. 装备环境工程, 2023, 20(5): 19. |
[38] | 张黎明, 张继垒. 舰载直升机旋翼迎风面防护技术研究进展. 装备环境工程, 2023, 20(7): 63. |
[39] | GOFF A, SPRINKLE C, MARTIN R, et al.Durable Sol-Gel surface treatment to mitigate galvanic corrosion. Department of Defense Allied Nations Technical Corrosion Conference, Virginia, 2019. |
[40] | CHARLES T W, THOMAS M H, DONALD F, et al.Characterization of ALONTM optical ceramic. SPIE Defense and Security Symposium, Orlando, 2005. |
[41] | KARANDIKAR P G, AGHAJANIAN M K, AGRAWAL D, et al.Microwave assisted (mass) processing of metal-ceramic and reaction-bonded composites// Ceramic Engineering and Science Proceedings. Hoboken: John Wiley & Sons Inc., 2008. |
[42] | HACKLER D.Complex flexible hybrid electronic labels. 2018FLEX Session 9.1: Flexible Electronics Applications,Milpitas, 2018. |
[43] | Air Force Sustainment Center. Durable rain-repellent coatings for aircraft transparencies. Air force SBIR/STTR program, 2017. |
[44] | ANTIFORAL A, TOULMAY F. CLEAN SKY--the green rotorcraft integrated technology demonstrator-state of play three years after kick-off. 37th European Rotorcraft Forum, Ticino Park, 2011. |
[45] | KÜFMANN P M, BARTELS R, WALL B G, et al. The second wind-tunnel test of DLR’s multiple swashplate system. CEAS Aeronautical Journal, 2019, 10(2): 385. |
[46] | KALOW S, KAMP V D, KEIMER B, et al. Next generation active twist helicopter rotor blade—simulated results validated by experimental investigation. 45th European Rotorcraft Forum,Warsaw, 2019. |
[47] | DEAS T. Aircraft survivability advances against hard to detect small arms, RPG and MANPADS threats. 68th American Helicopter Society Annual Forum, Fort Worth TX, 2012. |
[48] | AYLWORTH W. The evolving threat & operational environment’s impact on aircraft vulnerability reduction. 74th AHS International Annual Forum & Technology Display, Phoenix Arizona, 2018. |
[49] | CHAIT R, LYONS J, LONG D. Critical technology events in the development of the Apache helicopter. ADA450121. 2006. |
[50] | COUCH M, LINDELL D.Study on rotorcraft safety and survivability. 66th American Helicopter Society Annual Forum,Phoenix, 2010. |
[51] | PORTANOVA M A, DELMONT R M, BRESLIN M C. Critical component protection (CCP) increased vulnerability reduction for rotorcraft. Aircraft Survivability Journal, 2013. |
[52] | PATTERSON M C L, DIGIOVANNI A, FERENBACHLER L, et al.Spinel: gaining momentum in optical applications.Proc. SPIE 5078, Window and Dome Technologies VIII, Bellingham, 2003. |
[53] | JHA S K, SOHN Y H, SASTRI S, et al. Al-O-N based duplex coating system for improved oxidation resistance of superalloys and NiCrAlY coatings. Surface and Coatings Technology, 2004, 183(2/3): 224. |
[54] | HARTNETT T M, BERNSTEIN S D, MAGUIRE E A, et al. Optical properties of ALON (aluminum oxynitride). Infrared Physics & Technology, 1998, 39(4): 203. |
[55] | PARIMAL J P, HSIEH A J, GILDE G A.Improved low-cost multi-hit transparent armor. ADA481074. U.S. Army Research Laboratory, 2006. |
[56] | Automotive tank purchase description: purchase description-transparent armor.ATPD 2352R. 2010. |
[57] | PORTANOVA M A, DELMONT R M, BRESLIN M C. Development of multiple impact transparent armor systems. Aircraft Survivability Journal, 2013. |
[58] | Johns Hopkins Extreme Materials Institute. CMEDE (Center for materials in extreme dynamic environments) research. (2022-07-16) [2024-11-13]. https://hemi.jhu.edu/cmede/wp-content/uploads/2022/07/MBD-process-2022. |
[59] | HWANG C, DIPIETRO S, XIE K Y, et al. Small amount TiB2 addition into B4C through sputter deposition and hot pressing. Journal of the American Ceramic Society, 2019, 102(8): 4421. |
[60] | MCCAULEY J W. Institutional and technical history of requirements-based strategic armor ceramics basic research leading up to the multiscale material by design materials in extreme dynamic environments (MEDE) program. Part I. Brief history of institutional changes and relevant major research programs. International Journal of Ceramic Engineering & Science, 2023, 5(3): e10176. |
[61] | WEIGEL W D. Advanced rotor blade erosion protection system. ADA314355. Aviation Applied Technology Directorate, 1996. |
[62] | THOMAS W A, HONG S C, YU C Y, et al. Enhanced erosion protection for rotor blades. 65th American Helicopter Society Annual Forum, Texas, 2009. |
[63] | Rotor blade erosion protection manual.Technical Bulletin. TB 1-1615-351-23. |
[64] | HONG S C. Hontek HC05XP1 VS. 3M Tap. Comparison of hrdrolysis resistance and others. A White Paper, 2010. |
[65] | Leading edge protective coating against fluid and particulate erosion for turbofan blades. (2020-05-11)[2024-09-05]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/delta-mds_0520.pdf. |
[66] | America’s Phenix Inc. Leading edge protective coating against fluid and particulate erosion for turbofan blades. (2019-11-21) [2024-09-05]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/mds_delta.pdf. |
[67] | MDS Coating Technologies Corporation. MDS coating technologies announces new trade name for coating family BlackGoldTM. News Release, 2012. |
[68] | NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155. |
[69] | WILSON D M, VISSER L R. High performance oxide fibers for metal and ceramic composites. Composites Part A: Applied Science and Manufacturing, 2001, 32(8): 1143. |
[70] | MISRA A.Advanced ceramic materials for future aerospace applications. 39th International Conference and Exposition on Advanced Ceramics and Composites, Daytona, 2015. |
[71] | NGUYEN K, CHOPRA I. Effects of higher harmonic control on rotor performance and control loads. Journal of Aircraft, 1992, 29(3): 336. |
[72] | JOHSON W. Recent development in dynamics of advanced rotor systems part. Vertica, 1986, 10(11): 73. |
[73] | KINZEL M P, MAUGHMER M D, LESIEUTRE G A. Miniature trailing-edge effectors for rotorcraft performance enhancement. Journal of the American Helicopter Society, 2007, 52(2): 146. |
[74] | YOU Y, JUNG S N. Optimum active twist input scenario for performance improvement and vibration reduction of a helicopter rotor. Aerospace Science and Technology, 2017, 63: 18. |
[75] | CHOPRA I. Status of application of smart structures technology to rotorcraft systems. Journal of the American Helicopter Society, 2000, 45(4): 228. |
[76] | CHOPRA I. Review of state of art of smart structures and integrated systems. AIAA Journal, 2002, 40: 2145. |
[77] | SCHWARTZ R W, BALLATO J, HAERTLING G H. Piezoelectric and electro-optic ceramics// BUCHANAN R C. Ceramic Materials for Electronics. Boca Raton: Taylor and Franics Group , 2017. |
[78] | STRAUB F K, ANAND V R, BIRCHETTTE T S, et al.Smart rotor development and wind tunnel test. Proceedings of the 35th European Rotorcraft Forum, Hamburg, 2009. |
[79] | HAGERTY B, KOTTAPALLI S. Boeing SMART rotor full scale wind tunnel test data report. NASA/TM-2012-216048. |
[80] | DIETETICH O, ENENKL B, ROTH D.Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system. American Helicopter Society 62nd Annual Forum Proceedings, Phoenix, 2006. |
[81] | ROTH D, ENENKL B, DIETETICH O.Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results. Proceedings of 32nd European Rotorcraft Forum, Maastricht, 2006. |
[82] | CEDRAT TECHNOLOGIES.Products Catalog Version 4.1. 4.11 Amplified piezoelectric actuators APA XL series. |
[83] | WILLIAMS R B, GRIMSLEY B W, INMAN D J, et al.Manufacturing and mechanics-based characterization of macro fiber composite actuators.ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, 2008. |
[84] | SHEN J, THORINBURGH R P, KRESHOCK A R, et al.Preliminary design and evaluation of an airfoil with continuous trailing-edge flap. AHS Future Vertical Lift Aircraft Design Conference, San Francisco, 2012. |
[85] | THORINBURGH R P, KRESHOCK A R, WILBUR M L, et al.Continuous trailing-edge flaps for primary flight control of a helicopter main rotor. Proceedings of the 70th Annual Forum of the American Helicopter Society, Montreal Quebec, 2014. |
[86] | SHEN J, THORINBURGH R P, LIU Y, et al.Design and optimization of an airfoil with active continuous trailing-edge flap. Proceedings of the 69th Annual Forum of the American Helicopter Society, Phoenix, 2013. |
[87] | CARLOS E S, CESNIK S S, WILKIE W K, et al. Modeling design and testing of the NASA/ARMY/MIT active twist rotor prototype blade. American Helicopter Society 55th Annual Forum,Montreal, 1999. |
[88] | PARK J S, KIM J H. Design and aeroelastic analysis of active twist rotor blades incorporating single crystal macro fiber composite actuators. Composites Part B: Engineering, 2008, 39(6): 1011. |
[89] | WIERACH P, RIEMENSCHNEIDER J, OPITZ S, et al. Experimental investigation of an active twist model rotor blade under centrifugal loads. Heidelberg: Springer, 2012. |
[90] | Research topics in aerospace:adaptive, tolerant and efficient composite structures. Heidelberg: Springer, 2012. |
[91] | HOFFMANN F, SCHNEIDER O, WALL V D, et al. STAR hovering test—proof of functionality and representative results. 40th European Rotorcraft Forum,Southampton, 2014. |
[92] | WIERACH P, OPITZ S, KALOW S. Experimental investigation of an active twist model rotor blade with a low voltage actuation system. The Aeronautical Journal, 2015, 119(1222): 1499. |
[93] | KALOW S, KAMP V D, RIEMENSCHNEIDER J, et al. Experimental investigation and validation of structural properties of a new design for active twist rotor blades. 43rd European Rotorcraft Forum,Milan, 2017. |
[94] | KALOW S, KAMP V D, RIEMENSCHNEIDER J, et al. Manufacturing of a next generation active twist helicopter rotor blade and experimental results of functionality test. American Helicopter Society 74th Annual Forum,Phoenix, 2018. |
[95] | WALL B G, LIM J W, RIEMENSCHNEIDER J, et al. New smart twisting active rotor (STAR): pretest predictions. CEAS Aeronautical Journal, 2024, 15(3): 721. |
[96] | LIN M, CHANG F K. The manufacture of composite structures with a built-in network of piezoceramics. Composites Science and Technology, 2002, 62(7/8): 919. |
[97] | WILDSCHEK A, STORM S, HERRING M, et al.Design, optimization, testing, verification, and validation of the wingtip active trailing edge// Smart intelligent aircraft structures (SARISTU). Cham: Springer International Publishing, 2015. |
[98] | LOVERICH J, FRANK J, SZEFI J, et al. Rotary wing dynamic component structural life tracking with self-powered wireless sensors. American Helicopter Society 66th Annual Forum,Phoenix, 2010. |
[99] | SHI Y, HALLETT S R, ZHU M L. Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: part I--integration and experiment. Composite Structures, 2017, 160: 1279. |
[100] | STEVEN W A, CHRISROPHER P T, CHURCHILL D L, et al. Tracking pitch link dynamic loads with energy harvesting wireless sensors. American Helicopter Society 63rd Annual Forum,Virginia, 2007. |
[101] | THOMAS L, CHRISTOPHER P T, et al.Energy harvesters for rotorcraft wireless sensor networks. 8th DSTO International Conference on Health & Usage Monitoring, Geelong, 2013. |
[102] | DANIEL M W, FRATTINI T, CHURCHILL D L.Development of a helicopter on-rotor HUM system powered by vibration energy harvesting. 40th European Rotorcraft Forum,Milan, 2014. |
[103] | MOORE D. Energy harvesting, wireless structural health monitoring system for helicopter rotors. Navy SBIR, 2013, SBIR contract No. N68335-13-C-0320. |
[104] | MENDOZA E, KEMPEN C, ESTERKIN Y, et al.Energy harvesting, wireless fiber optic sensor (WiFOS™) structural health monitor system for helicopter rotors. 16th Australian International Aerospace Congress, Melbourne, 2015. |
[105] | MOORE D. Low power, low cost, lightweight, multichannel optical fiber interrogation unit for structural health management of rotor blades. Navy SBIR, 2015, SBIR contract No. 68335-16-C-0340. |
[106] | MENDOZA E A, ESTERKIN Y, ANDREAS T.Low power, low cost, lightweight, multichannel optical fiber interrogation system for structural health management of rotor blades. 18th Australian International Aerospace Congress, Melbourne, 2019. |
[107] | ATTICK D. Integrated hybrid structural health monitoring (SHM) system. Navy SBIR, 2016, SBIR contract No. N68335-18-C-0242. |
[108] | GRACE N. North Carolina State University develops CFRP skin for stealth aircraft. Composite World, 2021, 7(9): 18. |
[109] | JIA Y J, CHOWDHURY M A R, ZHANG D J, et al. Wide-band tunable microwave-absorbing ceramic composites made of polymer- derived SiOC ceramic and in situ partially surface-oxidized ultra- high-temperature ceramics. ACS Applied Materials & Interfaces, 2019, 11(49): 45862. |
[110] | JIA Y J, AJAYI T D, ROBERTS M A, et al. Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high- performance electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2020, 12(41): 46254. |
[111] | JIA Y J, AJAYI T D, WAHLS B H, et al. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites. ACS Applied Materials & Interfaces, 2020, 12(52): 58005. |
[112] | KUMAR P, SRIVASTAVA V K. Tribological behaviour of C/C-SiC composites—a review. Journal of Advanced Ceramics, 2016, 5(1): 171. |
[113] | Airbus Corporation. Airbus approval suppliers list, 2024. |
[114] | Collins Aerospace (Ratier-Figeac). Brakes (Rotor Brakes). (2020-06-23)[2024-11-13]. https://ratier-figeac.fr/en/nos-produits/. |
[115] | Department of the Army.Army science and technology for army aviation 2025--2040. Army science board fiscal year 2015 study, 2015. |
[116] | LE D, RIDDICK J C, WEISS V. “Fatigue-free” platforms: vision for army future rotorcraft.American Helicopter Society 70th Annual Forum, Montreal, 2014. |
[117] | DEWIND E, SOPKO R.Prognostics framework to enable a maintenance free operating period. Vertical Flight Society’s 77th Annual Forum & Technology Display,Virtual, 2021. |
[118] | 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景. 航空材料学报, 2019, 39(5): 34. |
[119] | WANG B, CAI D L, LI S Q, et al. Effect of B4C particle size and TiB2 content on the mechanical properties of B4C composites and their dynamic mechanical properties. International Journal of Applied Ceramic Technology, 2024, 21(1): 438. |
[120] | WANG B, CAI D L, WANG H Y, et al. Microstructures and mechanical properties of B4C-SiC and B4C-SiC-TiB2 ceramic composites fabricated by hot pressing. Journal of the American Ceramic Society, 2023, 106(8): 5046. |
[121] | WANG B, CAI D L, XUE C Y, et al. Preparation and mechanical properties of laminated B4C-TiB2/BN ceramics. Ceramics International, 2021, 47(22): 31214. |
[122] | 刘家希, 石晓东, 姜良宝, 等. 陶瓷基透明防弹装甲研究进展. 材料工程, 2021, 49(11): 30. |
[123] | 李贇.基于MFC的连续后缘襟翼设计与旋翼振动载荷影响分析. 南京: 南京航空航天大学硕士学位论文, 2018. |
[124] | 王雪枫.MFC驱动的智能扭转旋翼模型桨叶研制. 南京: 南京航空航天大学硕士学位论文, 2021. |
[125] | 姚俊唯.PMN-PZT系陶瓷与MFC压电驱动器的制备及性能研究. 南京: 南京航空航天大学硕士学位论文, 2017. |
[126] | 张晓宝.改性PMN-PZT压电陶瓷及其柔性MFC驱动器的制备与性能研究. 南京: 南京航空航天大学硕士学位论文, 2018. |
[127] | WANG Y, QIU L, LUO Y J, et al. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring. Structural Health Monitoring, 2021, 20(3): 861. |
[128] | HE Z, WANG K, ZHAO Z, et al. A wearable flexible acceleration sensor for monitoring human motion. Biosensors, 2022, 12(8): 620. |
[129] | 闫蓉, 李凯. 基于关键压电材料的直升机振动能量收集装置仿真分析. 中国科技信息, 2020(6): 39. |
[130] | 蒋相闻, 招启军, 孟晨. 直升机旋翼桨叶外形对雷达特征信号的影响. 航空学报, 2014, 35(11): 3123. |
[131] | 蒋相闻, 招启军. 考虑旋翼调制影响的直升机RCS特性分析及评估. 航空动力学报, 2014, 29(4): 824. |
[132] | 蒋相闻.直升机气动/雷达隐身特性综合优化设计及应用. 南京: 南京航空航天大学博士学位论文, 2016. |
[133] | 韩敏阳, 韦国科, 周明, 等. 低频雷达吸波材料的研究进展. 复合材料学报, 2022, 39(4): 1363. |
[134] | 徐俊杰, 王岭, 王晓猛, 等. 耐高温吸波材料的研究进展. 现代技术陶瓷, 2024, 45(3): 189. |
[135] | 陈政伟, 黄小萧, 贾德昌, 等. 高温吸波陶瓷材料研究进展. 现代技术陶瓷, 2020, 4(1/2): 1. |
[136] | WANG L, DUAN X M, LIU S J, et al. Synergistic microwave absorption effect of graphene-BN-Fe3O4 composite at thin thickness. Applied Surface Science, 2024, 675: 160959. |
[137] | 迟波, 于博. 碳/碳复合材料的发展及应用研究. 纤维复合材料, 2023, 40(4): 76. |
[138] | 周一帆, 陆贤坤, 刘海平, 等. 航空刹车材料发展概述. 化工设计通讯, 2020, 46(6): 86. |
[139] | 李松梅, 尹晓琳, 刘建华, 等. Zn-Al-[V10O28]6-双层氢氧化物掺杂对LY12铝合金表面溶胶-凝胶涂层性能的影响. 物理化学学报, 2014, 30(11): 2092. |
[140] | 张旋, 钟艳莉, 颜悦, 等. 聚碳酸酯透明材料表面耐磨涂层的纳米力学性能和耐磨性研究. 材料工程, 2014, 42(1): 79. |
[141] | 邹铭, 周晓龙, 黄文文, 等. 金属表面前处理用聚硅氮烷转化膜技术. 涂料工业, 2020, 50(4): 19. |
[142] | 战帅, 吕晓林, 陈翔宇, 等. 吸波涂层对直升机旋翼电磁散射特性影响研究. 舰船电子工程, 2024, 44(7): 190. |
[143] | 白钧生, 王靖, 李碧波, 等. 多类型航空刹车器件性能试验台设计. 机床与液压, 2023, 51(23): 155. |
[144] | SEZNEC M, IVANOFF J G. RACER COUMPOUND helicopter: operational wireless FTI data transfer from rotor up to fuselage. AHS International 78th Annual Forum & Technology Display, Fort Worth, 2022. |
[1] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[2] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[3] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[4] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[5] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[6] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[7] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[8] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[9] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[10] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[11] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[12] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[13] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[14] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[15] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||