Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (8): 895-902.DOI: 10.15541/jim20240012
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
CHENG Jun1,2(), ZHANG Jiawei1,2(
), QIU Pengfei1,2,3, CHEN Lidong1,2, SHI Xun1,2(
)
Received:
2024-01-08
Revised:
2024-03-04
Published:
2024-08-20
Online:
2024-03-22
Contact:
ZHANG Jiawei, professor. E-mail: jiaweizhang@mail.sic.ac.cn;About author:
CHENG Jun (1997-), male, PhD candidate. E-mail: chengjun@student.sic.ac.cn
Supported by:
CLC Number:
CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2[J]. Journal of Inorganic Materials, 2024, 39(8): 895-902.
Fig. 3 Electrical transport properties of samples (a, b) Temperature dependences of electrical conductivity σ (a) and Seebeck coefficient S (b) for as-synthesized FeSi2-xPx (x=0, 0.02, 0.04, 0.06); (c, d) Comparison of the absolute values of Seebeck coefficients |S| (c) and carrier concentrations nH (d) for Co-, Ir-, and P-doped β-FeSi2 at 300 K; (e) Temperature dependence of power factor PF for as-synthesized FeSi2-xPx (x=0, 0.02, 0.04, 0.06); (f) Comparison of room-temperature power factor PF for various n-type doped β-FeSi2[13-14,17 -18,25]; Colorful figures are available on website
Fig. 4 Thermal transport properties of samples (a, b) Temperature dependences of total thermal conductivity κ (a) and lattice thermal conductivity κL (b) for as-synthesized FeSi2-xPx (x=0, 0.02, 0.04, 0.06); (c) Temperature dependence of the experimental and Debye model calculated lattice thermal conductivity κL for as-synthesized FeSi1.96P0.04 (U: Umklapp process; B: grain-boundary scattering; PD: point-defect scattering; EP: phonon-electron scattering); (d) Comparison of room temperature lattice thermal conductivity κL for Co-, Ir-, and P-doped β-FeSi2 at the same doping content; (e, f) Room-temperature lattice thermal conductivity κL as a function of the doping content of Co-doped β-FeSi2 (e) and P-doped β-FeSi2 (f), in which the solid square symbols represent the experimental data, while the red solid lines denote the Callaway model; Colorful figures are available on website
Fig. 5 Overall thermoelectric performance of samples (a) Temperature dependence of ZT for as-synthesized FeSi2-xPx (x=0, 0.02, 0.04, 0.06); (b) Comparison on ZT values of various n-type doped β-FeSi2[13-14,17 -18,25]
Fitting parameter | FeSi1.96P0.04 |
---|---|
L/μm | 3 |
A/(×10-41, s3) | 0.09 |
B/(×10-18, s·K-1) | 0.48 |
C/(×10-15, s-1) | 0.08 |
R2 | 0.99642 |
χ2 | 0.06560 |
Table S1 Parameters used to fit the lattice thermal conductivity κL of FeSi1.96P0.04
Fitting parameter | FeSi1.96P0.04 |
---|---|
L/μm | 3 |
A/(×10-41, s3) | 0.09 |
B/(×10-18, s·K-1) | 0.48 |
C/(×10-15, s-1) | 0.08 |
R2 | 0.99642 |
χ2 | 0.06560 |
[1] | ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019, 34(3): 279. |
[2] | SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105. |
[3] | WU Z, HU Z. Perspective—powerful micro/nano-scale heat engine: thermoelectric converter on chip. ECS Sensors Plus, 2022, 1(2): 023402. |
[4] | ZHU T, LIU Y, FU C, et al. Compromise and synergy in high- efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884. |
[5] | LIU Y, ZAMANIPOUR Z, VASHAEE D. Economical FeSi2-SiGe composites for thermoelectric power generation. 2012 IEEE Green Technologies Conference, Tulsa, 2012. |
[6] | MAKITA Y, OOTSUKA T, FUKUZAWA Y, et al. β-FeSi2 as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application. SPIE Proceedings: Photonics for Solar Energy Systems, Strasbourg, 2006. |
[7] | CABALLERO-CALERO O, ARES J R, MARTÍN-GONZÁLEZ M. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Advanced Sustainable Systems, 2021, 5(11): 2100095. |
[8] | ITO M, NAGAI H, ODA E, et al. Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying. Journal of Materials Science, 2002, 37(13): 2609. |
[9] | LAILA A, NANKO M, TAKEDA M. Upgrade recycling of cast iron scrap chips towards β-FeSi2 thermoelectric materials. Materials, 2014, 7(9): 6304. |
[10] | DUSAUSOY Y, PROTAS J, WANDJI R, et al. Structure cristalline du disiliciure de fer, FeSi2β. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1971, 27(6): 1209. |
[11] | CHAI J, MING C, DU X, et al. Thermodynamics, kinetics and electronic properties of point defects in β-FeSi2. Physical Chemistry Chemical Physics, 2019, 21(20): 10497. |
[12] | DU X, QIU P, CHAI J, et al. Doubled thermoelectric figure of merit in p-type β-FeSi2 via synergistically optimizing electrical and thermal transports. ACS Applied Materials & Interfaces, 2020, 12(11): 12901. |
[13] | DU X, HU P, MAO T, et al. Ru alloying induced enhanced thermoelectric performance in FeSi2-based compounds. ACS Applied Materials & Interfaces, 2019, 11(35): 32151. |
[14] | QIU P, CHENG J, CHAI J, et al. Exceptionally heavy doping boosts the performance of iron silicide for refractory thermoelectrics. Advanced Energy Materials, 2022, 12(18): 2200247. |
[15] | TANI J I, KIDO H. Electrical properties of Co-doped and Ni-doped β-FeSi2. Journal of Applied Physics, 1998, 84(3): 1408. |
[16] | TANI J I, KIDO H. Thermoelectric properties of β-Fe1-xCoxSi2 semiconductors. Japanese Journal of Applied Physics, 2001, 40(5R): 3236. |
[17] | SAM S, ODAGAWA S, NAKATSUGAWA H, et al. Effect of Ni substitution on thermoelectric properties of bulk β-Fe1-xNixSi2 (0≤x≤0.03). Materials, 2023, 16(3): 927. |
[18] | TANI J I, KIDO H. Thermoelectric properties of Pt-doped β-FeSi2. Journal of Applied Physics, 2000, 88(10): 5810. |
[19] | TANI J I, KIDO H. Thermoelectric properties of Mn-doped β-FeSi2 fabricated by spark plasma sintering. Journal of the Ceramic Society of Japan, 2001, 109(1270): 557. |
[20] | CHEN H Y, ZHAO X B, LU Y F, et al. Microstructures and thermoelectric properties of Fe0.92Mn0.08Six alloys prepared by rapid solidification and hot pressing. Journal of Applied Physics, 2003, 94(10): 6621. |
[21] | TANI J I, KIDO H. Electrical properties of Cr-doped β-FeSi2. Japanese Journal of Applied Physics, 1999, 38(5R): 2717. |
[22] | KIM S W, CHO M K, MISHIMA Y, et al. High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants. Intermetallics, 2003, 11(5): 399. |
[23] | EHARA T, NAITO S, NAKAGOMI S, et al. Phosphorous doping in beta-irondisilicide by co-sputtering method. Materials Letters, 2002, 56(4): 471. |
[24] | EHARA T, NAKAGOMI S, KOKUBUN Y. Preparation of phosphorous dope beta-irondisilicide thin films and application for devices. Solid-State Electronics, 2003, 47(2): 353. |
[25] | ITO M, NAGAI H, ODA E, et al. Effects of P doping on the thermoelectric properties of β-FeSi2. Journal of Applied Physics, 2002, 91(4): 2138. |
[26] | GOLDBECK O K. Iron-Silicon//IRON-Binary Phase Diagrams. Heidelberg: Springer, 1982: 136. |
[27] | YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: progress and their applications. Advanced Energy Materials, 2018, 8(6): 1701797. |
[28] | KIM H S, GIBBS Z M, TANG Y L, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3(4): 041506. |
[29] | CALLAWAY J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, 113(4): 1046. |
[30] | LIU H, YANG J, SHI X, et al. Reduction of thermal conductivity by low energy multi-Einstein optic modes. Journal of Materiomics, 2016, 2(2): 187. |
[31] | SHEN J J, FANG T, FU T Z, et al. Lattice thermal conductivity in thermoelectric materials. Journal of Inorganic Materials, 2019, 34(3): 260. |
[32] | ZHOU Z Z, YAN Y C, YANG X L, et al. Anomalous lattice thermal conductivity driven by all-scale electron-phonon scattering in bulk semiconductors. Physical Review B, 2023, 107(19): 195113. |
[33] | ZHU T, YU G, XU J, et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials, 2016, 2(8): 1600171. |
[34] | QIN Y T, QIU P F, SHI X, et al. Thermoelectric properties for CuInTe2-xSx (x=0, 0.05, 0.1, 0.15) solid solution. Journal of Inorganic Materials, 2017, 32(11): 1171. |
[35] | XIE H, SU X, ZHENG G, et al. The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1-xZnxFeS2 with in situ nanoprecipitates. Advanced Energy Materials, 2017, 7(3): 1601299. |
[36] | YANG J, MORELLI D T, MEISNER G P, et al. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3. Physical Review B, 2002, 65(9): 094115. |
[37] | NAGAI H, TAKAMATSU T, IIJIMA Y, et al. Effects of Ge substitution on thermoelectric properties of CrSi2. Japanese Journal of Applied Physics, 2016, 55(11): 111801. |
[38] | ZHOU A J, ZHU T J, ZHAO X B, et al. Improved thermoelectric performance of higher manganese silicides with Ge additions. Journal of Electronic Materials, 2010, 39(9): 2002. |
[39] | DU R, ZHANG G, HAO M, et al. Enhanced thermoelectric performance of Mg-doped AgSbTe2 by inhibiting the formation of Ag2Te. ACS Applied Materials & Interfaces, 2023, 15(7): 9508. |
[40] | WANG Y, ZHANG X, LIU Y, et al. Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping. Vacuum, 2020, 177: 109388. |
[41] | LI J C, LI D, QIN X Y, et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126: 6. |
[1] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[2] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[3] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[4] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[5] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[6] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[7] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[8] | LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy [J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337. |
[9] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[10] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[11] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[12] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[13] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[14] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[15] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||