【能源环境】钙钛矿(202312)
有机-无机杂化钙钛矿太阳能电池(PSCs)具有高能量转换效率、低能耗和低成本等优点, 但PSCs界面缺陷引起的非辐射复合严重阻碍了其光电转换性能提升。本研究通过降低氧化镍空穴传输层的粒径尺寸, 提高粒径均匀性, 实现了光生空穴在电池界面的高效传输; 并通过优化钙钛矿薄膜的反溶剂作用时间提升结晶质量, 降低界面非辐射复合, 改善空穴传输层和钙钛矿的界面问题, 使钙钛矿太阳能电池的能量转换效率(PCE)从10.11%提高到18.37%。开尔文探针力显微镜(KPFM)研究表明, 界面优化后的钙钛矿薄膜在亮态下的表面接触电位差相比于暗态下增加了120.39 mV。采用压电力原子力显微镜(PFM)分析钙钛矿薄膜明暗态铁电性能, 发现界面优化后的钙钛矿铁电极化变化微弱, 说明优化界面有效降低了电池界面缺陷和迟滞效应。该研究结果表明, 优化氧化镍空穴传输层, 提高钙钛矿薄膜质量, 减少了界面缺陷, 降低了非辐射复合和电池迟滞效应, 提高了钙钛矿太阳能电池的能量转换效率。
钙钛矿太阳能电池(PSCs)发展迅速, 其能量转换效率(PCE)被一再刷新, 但长期稳定性还有待提高。目前大部分高效率钙钛矿太阳能电池在惰性气体环境中完成制备, 成本高且操作空间有限, 不利于产业化应用。本研究成功在空气中制备了具有超长稳定性的混合阳离子钙钛矿太阳能电池, 系统探究了A位阳离子掺杂对钙钛矿微观结构、光电性能以及稳定性的影响。实验结果表明, 掺杂FA+和Cs+可以提高钙钛矿薄膜质量, 优化钙钛矿/SnO2的能级排列, 抑制载流子复合, 显著提高器件的光电转换效率、长期以及湿热稳定性。Cs0.05MA0.35FA0.6PbI3电池的最佳PCE为19.34%, 在(20±5) ℃, 相对湿度<5%的黑暗环境中放置242 d后, 仍保持初始效率的85%。MAPbI3电池在同样测试条件下放置112 d后, 效率下降为初始值的30%。掺杂FA+和Cs+也显著提高了电池的抗热和抗湿性。Cs0.05MA0.35FA0.6PbI3电池分别在(85±5) ℃、相对湿度20%~30%和(20±5) ℃、相对湿度80%~90%的黑暗环境中放置96 h后, PCE分别为初始值的99%和84%, 而MAPbI3在同样条件下的PCE仅为初始值的70%和56%。本研究为在空气环境制备高效、超长稳定的混合阳离子钙钛矿太阳能电池提供了参考。
有机−无机杂化钙钛矿太阳能电池(PSCs)因高能量转换效率(PCE)和低制造成本而受到了广泛关注。尽管认证PCE已经高达26%, 但在高温、高湿度和持续光照下PSCs的稳定性仍然明显落后于传统太阳能电池, 这成为其商业化道路中最大的阻碍。开发和应用高稳定性的无机空穴传输材料(HTMs)是目前解决器件光热稳定性的有效方法之一, 引入无机HTMs可以有效屏蔽水和氧对钙钛矿吸光层的侵蚀, 从而避免形成离子迁移通道。本文概述了应用于有机−无机杂化钙钛矿太阳能电池的无机HTMs的分类和光电特性, 介绍了相关研究进展, 总结了针对无机HTMs器件的性能优化策略, 包括元素掺杂、添加剂工程和界面工程, 最后展望了无机HTMs未来的发展方向。下一步需要更深入地研究无机HTMs的微观结构及其与PSCs性能的关系, 从而实现更高效、更稳定的PSCs器件。
阻变器作为一种基于可逆、非易失、阻态突变的信息存储和处理器件, 是解决传统存储器的内在物理限制和冯·诺依曼架构瓶颈问题的核心电子元器件之一, 受到了广泛关注。卤化物钙钛矿具有快速的载流子迁移特性和优异的光电转换性能, 作为阻变功能层赋予光电阻变存储器优异的阻变性能。因此, 近年来卤化物钙钛矿基阻变器的存储和计算应用研究发展迅速。然而, 目前对于卤化物钙钛矿的光电阻变机理尚未形成统一认识。基于此, 本文分析了卤化物钙钛矿阻变存储器的工作机理, 对比分析了卤化物钙钛矿基光电阻变器导电细丝和能级匹配调控特性, 总结了其各种机理的制约因素, 揭示了导电细丝在光场和电场作用下重复形成和断裂, 以及阻变器中卤化物钙钛矿功能层和其他功能层之间肖特基势垒改变, 主导卤化物钙钛矿光电阻变器的开关比、阈值(Set/Reset)电压和阻变器性能稳定性, 并进一步展望卤化物钙钛矿基光电阻变器在新型人工智能仿生突触、存内运算、机器视觉的应用。
单结太阳电池的能量转换效率从根本上受限于Shockley-Queisser(S-Q)理论极限, 二端叠层结构可同时解决单结器件中面临的光谱失配和热弛豫能量损耗问题, 是突破S-Q极限最有前途的实用技术。二端叠层太阳电池中的复合层作为中间层的重要组分, 为来自两侧的电子和空穴提供复合位点, 避免了电荷堆积造成的开路电压损失并促进了电流流通, 是实现高性能叠层器件的关键因素之一。理想的复合层应具有较高电导率以提高电荷复合速率、高光学透过率以保证后结子电池的有效光吸收、良好的化学稳定性以降低溶剂对子电池的溶解伤害以及较低的制备成本以推动叠层电池的商业化生产进程。目前已有多种材料被应用于二端叠层太阳电池中, 如薄金属、透明导电氧化物、导电聚合物、氧化石墨烯等, 在钙钛矿-钙钛矿、钙钛矿-有机、钙钛矿-晶硅叠层器件中发挥了重要作用。本文归纳了不同类型叠层太阳电池复合层的研究进展, 系统介绍了复合层的种类、设计原则、制备工艺等, 对比其优缺点并提出了复合层目前存在的问题和面临的挑战, 为制备高效叠层电池提供了有益参考。
近年来, 有机-无机杂化钙钛矿太阳能电池以其优异的性能和低廉的制造成本受到了广泛关注。然而, 其含有铅元素的毒性以及稳定性阻碍了进一步商业化应用。双钙钛矿材料Cs2AgBiBr6具有稳定性优异、毒性低、载流子寿命长和载流子有效质量小的优势, 是一种颇具潜力的光伏材料, 已被应用于太阳能电池并展现出良好的性能。但是Cs2AgBiBr6钙钛矿太阳能电池的光电转换效率还无法与有机-无机杂化钙钛矿太阳能电池相媲美, 发展仍面临诸多挑战。本文首先介绍了Cs2AgBiBr6的晶体结构及容忍因子等结构参数; 然后介绍了溶液法、反溶剂辅助成膜法、气相法、真空辅助成膜法以及喷涂法等薄膜制备工艺的进展, 评述了各种薄膜制备工艺的优缺点; 接着从元素掺杂、添加剂工程及界面工程(界面能级匹配和界面缺陷钝化)三方面介绍了Cs2AgBiBr6钙钛矿太阳能电池的性能优化策略, 结合近年来的研究进展进行了评述; 最后指出Cs2AgBiBr6钙钛矿太阳能电池面临的挑战, 并从前驱体溶剂工程、带隙工程以及器件降解机理三方面展望了未来研究方向。
X射线探测在医学影像、安检、工业无损探测等领域应用广泛。卤化物钙钛矿X射线探测器因具有灵敏度高、检测下限低等显著优点而引人瞩目, 然而三维结构的钙钛矿内部离子迁移显著, 导致其稳定性较差。研究表明, 低维结构可以有效抑制钙钛矿中的离子迁移, 进而提高钙钛矿X射线探测器的稳定性。本文围绕X射线探测器的工作原理、关键性能参数、低维钙钛矿材料及器件等方面, 详细介绍了低维钙钛矿X射线探测器近期的研究进展,系统分析了低维钙钛矿材料的结构特性及其对X射线探测性能的影响。低维钙钛矿可实现兼具高灵敏度和高稳定性X射线探测器的制备, 是发展潜力巨大的候选材料。进一步优化材料体系, 设计器件结构, 制备大面积、像素化的成像器件, 深入研究探测器的工作机制等是促进低维钙钛矿X射线探测器走向应用的关键。
钙钛矿发光二极管(PeLEDs)具有优异的光电特性, 在显示应用中表现出巨大的发展潜力。红、绿和蓝单色PeLEDs的研究已经取得了突破性的进展, 但是三色钙钛矿共同电致发光的研究始终迟滞不前。本研究在不同钙钛矿之间引入具有空穴/电子产生和传输能力的中间连接层(ICL), 实现了蓝绿双色和红绿蓝三色发光中心共同电致发光。一方面, ICL可以抑制不同钙钛矿之间的离子交换和能量转移; 另一方面, ICL具有电荷产生和输运功能, 能够确保不同发光中心获得足够的载流子实现独立发光。进一步改变空穴传输层(NPB)的厚度可以调控蓝绿双色发光中心之间的能量均衡分布, 当NPB厚度为40 nm时,器件表现出最大外量子效率(External Quantum Efficiency, EQE)为0.33%。红绿蓝钙钛矿共同电致发光器件的最大EQE达到0.5%。本工作首次报道了红绿蓝三色钙钛矿共同电致发光, 并为钙钛矿多色发光中心共同电致发光提供了具有参考性的策略, 推动了钙钛矿在显示应用中的发展进程。
带隙1.1~1.4 eV的锡铅混合卤化物钙钛矿是单结太阳能电池光电转换效率(PCE)接近Shockley-Queisser (S-Q)理论效率极限值的理想材料。钙钛矿薄膜垂直方向上的化学组分梯度会通过影响能带结构影响载流子的传输和分离, 因此对锡铅混合钙钛矿薄膜的结晶过程进行控制十分重要。本研究发现使用不同剂量的反溶剂制备锡铅混合钙钛矿会形成不同的垂直组分梯度, 并且随反溶剂用量增大薄膜表面铅含量增加。调整溶剂组分可以控制锡铅混合钙钛矿的垂直组分梯度, 增大溶剂中V(DMSO):V(DMF)可以形成底部富铅而表面富锡的垂直组分梯度。当铅基前驱液溶剂中V(DMSO):V(DMF)最优化为1 : 2时, 相比于1 : 4的对照组, 器件在标准光照条件下的开路电压从0.725 V提高到0.769 V, 短路电流密度从30.95 mA·cm-2提高到31.65 mA·cm-2, PCE从16.22%提升到接近18%。利用SCAPS软件数值模拟进一步证明了垂直组分梯度的必要性, 当钙钛矿薄膜底部富铅、顶部富锡时, 载流子在空穴传输层界面区域的复合有所减少, 因而电池性能得到提升。
有机-无机杂化钙钛矿具有高的光吸收系数、可调节的带隙以及双极性的电荷传导特性, 是一种理想的光吸收材料。然而, 溶液法制备的钙钛矿薄膜在表/界面上存在多种缺陷, 会抑制载流子传输并引发复合。本研究选用含多官能团的氨基酸衍生物——9-芴甲氧羰基-L-苯丙氨酸-L-苯丙氨酸(Fmoc-FF-OH)作为添加剂来降低钙钛矿膜缺陷并抑制晶界上的载流子复合。结果表明, 当Fmoc-FF-OH的浓度为0.6 g·L-1时, 钙钛矿薄膜的粒径从138 nm增大到210 nm, 缺陷态密度从2.46×1015 cm-3降低至2.17×1015 cm-3。同时, 钙钛矿太阳能电池也表现出最优的性能, 开路电压从1.05 V提升到1.10 V, 器件的光电转化效率(PCE)从15.50%提升到17.44%。在220 h的稳定性测试中, 器件的光电转化效率仍能维持初始的71%。
二维(2D)钙钛矿以其固有的量子阱结构、较大的激子结合能和良好的稳定性, 在光电应用领域中具有广阔的前景。然而, 提高二维钙钛矿薄膜质量、降低成本并简化制备工艺仍然面临巨大的挑战。本工作在低退火温度(80 ℃)且无需其他特殊处理的条件下, 采用溶液法制备高质量二维钙钛矿(PEA)2PbI4薄膜, 并进一步制备了光电探测器。结果表明, 这种光电探测器有较低的暗电流(10-11 A), 在450 nm光照下具有良好的响应度(107 mA·W-1)、较高的探测率(2.05×1012 Jones)和快速响应时间(250 μs/330 μs)。持续控制光照1200 s后, 器件可以保持95%的光电流。此外, 器件静置30 d后光电流几乎保持不变。本研究为开发稳定和高性能光电器件提供了良好的途径。
碳基钙钛矿太阳能电池(C-PSCs)具有稳定性好且成本低的优势, 展现出广阔的应用前景。本研究基于MAPbI3材料, 选择高质量的NiOx介孔层作为空穴传输层(HTL), 对比了NiOx介孔层不同制备方法对电池性能的影响, 并对NiOx介孔层的厚度进行优化。研究发现, 与旋涂工艺制备的NiOx介孔层相比, 丝网印刷工艺制备的介孔层的孔径分布均匀, 可改善钙钛矿(PVK)前体溶液填充在介孔支架中的填充状态。最终得到含HTL的高效率和低滞后的钙钛矿太阳能电池, 其开路电压(VOC)为910 mV, 光电转换效率(PCE)为14.63%, 认证效率达14.88%。此外, 在空气中储存近900 h, 其PCE没有明显衰减。
在卤族钙钛矿材料的缺陷研究中, 密度泛函理论计算发挥着重要作用。传统的半局域泛函(如PBE)虽然能够得到与实验接近的禁带宽度, 但是已有研究表明其不能准确描述材料的带边位置。采用更准确的杂化泛函, 结合自旋轨道耦合(SOC)效应与充分的结构优化开展缺陷研究十分必要。可以选择两种杂化泛函, 即屏蔽的杂化泛函HSE和非屏蔽的杂化泛函PBE0。本研究以正交相CsPbI3为例, 系统比较了两种方法在缺陷性质计算上的差异。计算结果表明, 对于体相性质, 两种杂化泛函并无明显的差别。但是, 对于缺陷性质, 两种泛函出现定性的差别。HSE计算中预测的浅能级缺陷, 在PBE0计算中大部分变为深能级缺陷, 且缺陷转变能级和Kohn-Sham能级均出现定性差别。上述差别的本质在于, Hartree-Fock交换势具有长程作用特征, 因而普通的杂化泛函如PBE0在计算量允许的超胞尺寸上无法得到收敛的结果, 而HSE对上述交换势具有屏蔽作用, 可采用相对小尺寸的超胞得到收敛的缺陷能级。本研究结果表明, 尽管HSE杂化泛函需要较大的Hartree-Fock混合参数(约0.43), 其仍是准确计算卤族钙钛矿缺陷性质的有效方法。
间接带隙的Cs2NaBiCl6双钙钛矿材料具有近红外宽波段发射特性, 但低发光效率限制了其在近红外发光领域的应用。本工作通过共沉淀法快速制备微米级尺寸的Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿晶体, 实现了近红外荧光增强, 并系统研究了其光学吸收、光致发射(PL)、光致激发(PLE)、时间分辨光致发光和荧光量子效率(PLQY)等光学性能。共沉淀法制备的Cs2Ag0.1Na0.9BiCl6:Tm3+的光学带隙为3.06 eV。在350 nm紫外光激发下, 可以观察到峰值位于680 nm的近红外宽峰发射, 这源于自陷激子发光。通过引入Tm3+作为新的发光中心, 实现了810 nm波段的近红外发光增强, 在780~830 nm波段荧光量子效率(PLQY)从1.67%提高到11.77%, 提高了6.05倍。在650~900 nm波段, Cs2Ag0.1Na0.9BiCl6:Tm3+的近红外PLQY高达25.22%。本研究证明了共沉淀法快速制备的Cs2Ag0.1Na0.9BiCl6:Tm3+钙钛矿作为新型近红外光源材料的可行性。
溶液制备的钙钛矿薄膜通常含有大量晶界, 会降低薄膜结晶质量, 导致缺陷复合, 不利于提升器件性能。因此,制备更高结晶质量的薄膜来进一步提升能量转化效率是钙钛矿太阳能电池面临的挑战。液晶分子具有强的自组装能力和形貌调节能力, 本研究引入一种向列型单分子液晶4-氰基-4′-戊基联苯(5CB)作为甲脒铅碘(CH(NH2)2PbI3, FAPbI3)钙钛矿前驱液的添加剂, 可以增大钙钛矿晶粒尺寸, 减少晶界。此外, 5CB的氰基能钝化钙钛矿晶粒表面未配位的Pb2+, 降低缺陷态密度, 从而抑制非辐射复合。经过优化, 添加0.2 mg/mL 5CB的钙钛矿太阳能电池的能量转化效率达到21.27%, 开路电压为1.086 V, 电流密度为24.17 mA/cm2, 填充因子为80.96%。本研究证明使用单分子液晶作为添加剂是提升FAPbI3钙钛矿电池性能的有效策略。
AgBi2I7薄膜具有良好的光电特性和环境稳定性, 是构筑异质结紫外光电探测器的有力候选材料之一。本研究采用溶液法制备AgBi2I7薄膜, 通过优化前驱体溶液的浓度和溶剂类型(正丁胺和二甲基亚砜)等工艺参数, 研究了其光电探测性能。采用最优方案在宽带隙的GaN上制备AgBi2I7薄膜, 构建AgBi2I7/GaN异质结。该异质结对UVA射线具有良好的选择性探测(探测半峰宽约30 nm)。在3 V偏压和350 nm紫外光照射下, 器件开关比超过5个数量级, 达到27.51 A/W的高响应度和1.53×1014 Jones的高探测率。研究表明溶液法制备的AgBi2I7薄膜有望应用于构建高性能的异质结紫外光电探测器。
氧化钛/氧化锆/碳三层结构钙钛矿太阳能电池(Perovskite solar cells, PSCs)具有原材料廉价、制备工艺易放大和稳定性好等优势, 受到了广泛关注。但三层结构PSCs的低温制备研究进展缓慢, 主要原因之一在于难以在低温条件下构建合适的氧化锆间隔层。本研究以尿素为孔隙率调节剂, 用简单的喷涂法制备多孔氧化锆间隔层用于三层结构PSCs。通过调节喷涂次数优化氧化锆层厚度为1100 nm时, 电池的性能最优, 单电池功率转换效率达到14.7%, 5块电池串联模块(5×0.9 cm×2.5 cm)达到10.8%。PSCs在恒温恒湿箱(25 ℃, 湿度40%)保存200 d, 功率转换效率保持稳定, 没有明显下降。柔性基底上的氧化锆层经50次弯曲测试后保持完整, 未见脱落。与传统的丝网印刷氧化锆间隔层制备方法相比, 本研究的喷涂方法具有方法简便、操作温度低、与柔性基底兼容性好的优点。
钙钛矿太阳电池以其优异的性能和发展潜力而成为新能源领域研究热点, 但仍然存在缺陷密度大、稳定性差等不足。本研究通过实验对比多种常见氨基酸的掺杂效果后, 将小分子有机物L-精氨酸引入钙钛矿前驱体溶液, 并通过二元两步法制备钙钛矿太阳电池。L-精氨酸掺杂提升了器件的光电性能, 光电效率由18.81%提升到21.86%。L-精氨酸通过降低钙钛矿层缺陷密度(由4.83×1016 cm-3降低到3.45×1016 cm-3), 减少了载流子非辐射复合, 延长了载流子的平均寿命, 且钙钛矿晶粒尺寸增大、晶界减少、薄膜吸光能力增强且稳定性提升, 迟滞效应得到抑制。这是由于L-精氨酸的多种基团与钙钛矿材料作用钝化了缺陷造成的。本研究为钙钛矿太阳电池的性能优化提供了一种借鉴方法。
三维(3D)有机-无机金属卤化物钙钛矿薄膜的表面和晶界处存在大量缺陷, 容易导致载流子的非辐射复合并加快3D钙钛矿分解, 进而影响钙钛矿太阳能电池(PSCs)能量转换效率(PCE)及稳定性。本研究通过引入对氯苄胺阳离子, 与3D钙钛矿薄膜及其表面过剩的碘化铅反应后原位形成了二维(2D)钙钛矿, 实现了对3D钙钛矿薄膜表面和晶界处的缺陷钝化并改善了表面疏水性。基于该策略, 成功制备出具有更高PCE和更好稳定性的2D/3D-PSCs。本工作系统研究了钙钛矿薄膜的结构、形貌和器件的光电特性及稳定性。研究结果表明, 2D/3D-PSCs的PCE高达20.88%, 高于3D-PSCs的18.70%。另外, 2D/3D-PSCs连续工作200 h后(1个太阳光, N2氛围), PCE保持初始值的82%, 展现出优异的稳定性。
Cs2SnI6是一种稳定且环保的卤化物钙钛矿材料, 在光伏和光电应用方面具有巨大潜力。虽然表面性质对于光电器件的制备至关重要, 但目前尚没有对该材料开展相关的理论研究。利用密度泛函理论计算结合SCAN+rVV10泛函, 本工作研究了Cs2SnI6的(001)、(011)和(111)表面以揭示其热力学稳定性。针对每个表面, 研究考虑了具有不同截断的模型, 包括两个沿(001)方向(分别为CsI2和SnI4终止的表面), 两个沿(011)方向(分别为I4和Cs2SnI2 终止的表面)和三个沿(111)方向(分别为非化学计量比的CsI3、Sn和满足化学计量比的CsI3终止的表面)。由于大多数表面模型是非化学计量比的, 它们的相对稳定性取决于实验制备条件, 因此需要考虑组成元素的化学势。通过确定允许的化学势区域, 研究分析了这些表面的热力学稳定性。结果表明, (001)和 (011)面的表面能会受到化学势的影响, 而满足化学计量比的CsI3终止的(111)表面不受化学势影响, 是Cs2SnI6最稳定的表面。该结果说明, 近期实验普遍观察到的暴露(111)面的晶体是受热力学稳定性驱动形成的。
发光材料在机密信息保护与防伪领域中发挥着重要作用。钙钛矿纳米晶作为一类高效低成本发光材料可通过两步法原位转换获得, 使其在信息加密、解密领域极具应用前景。本研究探索了“不可见”铅有机框架和发光MAPbBr3钙钛矿纳米晶间的可逆转换, 以及它们在荧光打印信息存储中的应用。通过铅离子与2-甲基咪唑配位构建新型金属有机框架, 实现铅离子限域分布, 在此基础上通过与甲胺溴原位反应生成钙钛矿纳米晶。利用金属有机框架在可见/紫外光下无光响应的特性, 通过墨水打印对信息进行加密存储。加密信息经甲胺溴喷雾处理, 引发原位反应生成钙钛矿纳米晶, 在紫外光下表现出强光致发光特性, 实现信息解密。利用甲胺溴和水作为解密和加密试剂可实现荧光的多次循环显示与消除。
0.96NaNbO3-0.04CaZrO3(简称NNCZ)陶瓷在室温下展现出稳定的双电滞回线, 但是其储能密度、储能效率和击穿强度都比较低, 限制其成为储能材料。本工作通过掺杂Fe2O3, 利用Fe 3+离子变价的特点, 实现NNCZ储能性能的优化。采用传统固相法制备了(0.96NaNbO3-0.04CaZrO3)-xFe2O3(简称NNCZ-xFe)反铁电储能陶瓷, 并对样品的相结构、微观形貌、电学性能和储能性能进行了表征, 重点研究了Fe2O3掺杂量对NNCZ陶瓷介电和储能性能的影响规律。结果表明, 样品均具有单一的钙钛矿结构, 掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 晶粒平均尺寸随着掺杂量增大先减小后增大, 掺杂量x=0.02时, 晶粒平均尺寸最小(5.04 mm), 且具有较好的储能性能。室温下, NNCZ-0.02Fe击穿强度为230 kV/cm, 击穿前的有效储能密度和储能效率分别为1.57 J/cm 3和55.74%。在125 ℃和外加电场为180 kV/cm下, NNCZ-0.02Fe的储能密度为4.53 J/cm 3。掺杂Fe2O3使NNCZ陶瓷的烧成温度降低, 氧空位的迁移速率下降, 抑制晶粒的长大, 同时降低了介电损耗, 使得击穿强度增加; 适量氧空位钉扎使得反铁电相向铁电相相翻转变得困难, 避免出现哑铃状双电滞回线, 从而提高储能效率。本研究结果表明NNCZ-xFe在电介质储能领域具有潜在应用价值。
钙钛矿锰氧化物(Perovskite manganese oxide, PMO)因受外界条件激励而发生变色的特性, 在散热领域中受到广泛关注。目前绝大多数针对PMO的变色特性的研究都是以温度激励为基础, 以电场激励实现的散热器件仍旧缺乏。由于电场激励伴随着焦耳热的影响, 目前PMO材料是否存在电致变色性能尚未得到明确证明。针对以上问题, 本研究利用电场激励对PMO内部Mn元素的影响, 提出了一种针对PMO材料的电改性方法。通过电改性大幅减弱PMO热致变色性能, 进而使La0.7Ca0.25K0.05MnO3(LCKMO)在电场激励实验中能够排除焦耳热的影响。对LCKMO电改性前后的热致变色及电致变色性能进行研究。电改性前的LCKMO发射率随温度升高而增大, 最大增量为17%。并且在受21 V电场激励后, 其发射率在173、203、243、273和373 K分别出现了15%、16%、10%、0.6%和1.4%的增量。电改性后的LCKMO热致变色性能大幅减弱, 且在受21 V电场激励后, 其发射率在273和373 K出现了10.7%和9.3%的增量。电改性前后的实验结果表明: LCKMO存在电致变色性能, 并且电场激励对LCKMO发射率的调控机制存在明显规律。此外, 针对PMO材料的电改性方法不仅能令PMO材料在排除焦耳热的影响下进行电致变色研究, 更为调控PMO材料热致变色性能提供了新的可能。
钛酸铋钠(Bi0.5Na0.5)TiO3(BNT)作为典型的钙钛矿型弛豫铁电体, 具有超高的场致应变, 是最有希望代替铅基体系的无铅压电体系之一。与铅基陶瓷相比, BNT基陶瓷具有驱动电压较高、迟滞较大以及温度稳定性差等劣势。为了优化无铅驱动器的应变性能, 本研究采用固相反应法制备(1-x){0.76(Bi0.5Na0.5)TiO3-0.24SrTiO3}-xNaNbO3(BNT- ST-xNN, x=0~0.03)无铅铁电陶瓷。结果表明, 当x=0.01时, 该陶瓷在较低电场(E=4 kV/mm)下的应变值可达到0.278%, 等效压电系数d*33高达695 pm/V。此时, 陶瓷处于非遍历/遍历弛豫相界处, 电场诱导弛豫-铁电相变导致大场致应变。与x=0.01相比, x=0.02时应变值为0.249%, 略微下降, 但迟滞却降低至43%。此外, 该应变在25~100 ℃温度范围内维持稳定。本研究表明, 在BNT基陶瓷中固溶SrTiO3和NaNbO3组元可以提高场致应变值, 同时维持较低的驱动电场和良好的温度稳定性, 可用于压电驱动器研制。