无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1103-1109.DOI: 10.15541/jim20230002
所属专题: 【能源环境】钙钛矿(202310); 【能源环境】太阳能电池(202310)
方万丽1,2(), 沈黎丽2, 李海艳2, 陈薪羽2, 陈宗琦2, 寿春晖3, 赵斌1(), 杨松旺1,2,4()
收稿日期:
2023-01-01
修回日期:
2023-04-11
出版日期:
2023-09-20
网络出版日期:
2023-05-04
通讯作者:
赵 斌, 教授. E-mail: zhaobin@usst.edu.cn;作者简介:
方万丽(1997-), 女, 硕士研究生. E-mail: fangwl08@163.com
FANG Wanli1,2(), SHEN Lili2, LI Haiyan2, CHEN Xinyu2, CHEN Zongqi2, SHOU Chunhui3, ZHAO Bin1(), YANG Songwang1,2,4()
Received:
2023-01-01
Revised:
2023-04-11
Published:
2023-09-20
Online:
2023-05-04
Contact:
ZHAO Bin, professor. E-mail: zhaobin@usst.edu.cn;About author:
FANG Wanli (1997-), female, Master candidate. E-mail: fangwl08@163.com
Supported by:
摘要:
碳基钙钛矿太阳能电池(C-PSCs)具有稳定性好且成本低的优势, 展现出广阔的应用前景。本研究基于MAPbI3材料, 选择高质量的NiOx介孔层作为空穴传输层(HTL), 对比了NiOx介孔层不同制备方法对电池性能的影响, 并对NiOx介孔层的厚度进行优化。研究发现, 与旋涂工艺制备的NiOx介孔层相比, 丝网印刷工艺制备的介孔层的孔径分布均匀, 可改善钙钛矿(PVK)前体溶液填充在介孔支架中的填充状态。最终得到含HTL的高效率和低滞后的钙钛矿太阳能电池, 其开路电压(VOC)为910 mV, 光电转换效率(PCE)为14.63%, 认证效率达14.88%。此外, 在空气中储存近900 h, 其PCE没有明显衰减。
中图分类号:
方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109.
FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes[J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109.
Fig. 1 (a) Schematic illustration and (b) work function of the device, cross-sectional SEM images of C-PSCs: (c) device A, (d) device B and (e) device C, and (f) element distribution in the direction of the white arrow in (e)
Fig. 3 SEM images of (a) ZrO2 mesoporous film, (b) spin- coated and (c) screen-printed NiOx films, and (d) PL spectra for sample A (ZrO2/MAPbI3), sample B (ZrO2/NiOx (spin-coated)/ MAPbI3), and sample C (ZrO2/NiOx(screen-printed)/MAPbI3)
Fig. 5 (a-c) J-V curves and (d) incident photon-to-electron conversion efficiency (IPCE) spectra and the integrated current density curves of different devices (a) Forward and reverse scans of device A, B and C; (b) Different thicknesses of NiOx layer; (c) The optimum cells of device A and device C; Colorful figures are available on website
Fig. 6 (a) J-V curves under dark conditions, (b) light-intensity dependence of VOC (solid line: linear fitting), (c) transient photovoltage (TPV) decay curves, (d) transient photocurrent (TPC) decay curves, (e) Nyquist plots measured in the dark, and (f) Mott-Schottky plots for device A and device C; Colorful figures are available on website
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | ||||
---|---|---|---|---|---|---|---|---|
Reverse | Forward | Reverse | Forward | Reverse | Forward | Reverse | Forward | |
Device A | 0.779 | 0.764 | 23.45 | 23.38 | 63.60 | 55.47 | 11.62 | 9.91 |
Device B | 0.822 | 0.820 | 23.62 | 23.56 | 60.66 | 60.26 | 11.78 | 11.64 |
Device C | 0.904 | 0.903 | 23.57 | 23.56 | 63.29 | 62.98 | 13.49 | 13.40 |
Table S1 Photovoltaic parameters for different devices with an aperture area of 0.07 cm2 under 1 sun (100 mW·cm-2) illumination
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | ||||
---|---|---|---|---|---|---|---|---|
Reverse | Forward | Reverse | Forward | Reverse | Forward | Reverse | Forward | |
Device A | 0.779 | 0.764 | 23.45 | 23.38 | 63.60 | 55.47 | 11.62 | 9.91 |
Device B | 0.822 | 0.820 | 23.62 | 23.56 | 60.66 | 60.26 | 11.78 | 11.64 |
Device C | 0.904 | 0.903 | 23.57 | 23.56 | 63.29 | 62.98 | 13.49 | 13.40 |
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
NiOx (0.8 μm) | 0.898 | 22.36 | 61.66 | 12.38 |
NiOx (1.6 μm) | 0.932 | 22.68 | 62.87 | 13.28 |
NiOx (2.4 μm) | 0.939 | 20.86 | 54.43 | 10.66 |
Table S2 Photovoltaic parameters of devices with different thicknesses of screen-printed NiOx layer
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
NiOx (0.8 μm) | 0.898 | 22.36 | 61.66 | 12.38 |
NiOx (1.6 μm) | 0.932 | 22.68 | 62.87 | 13.28 |
NiOx (2.4 μm) | 0.939 | 20.86 | 54.43 | 10.66 |
Device | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Device A | 0.840 | 23.39 | 61.00 | 11.95 |
Device C | 0.910 | 25.04 | 64.13 | 14.63 |
Table S3 Photovoltaic parameters of device A and C
Device | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Device A | 0.840 | 23.39 | 61.00 | 11.95 |
Device C | 0.910 | 25.04 | 64.13 | 14.63 |
[1] |
KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[2] |
SAMANTARAY M R, RANA N K, KUMAR A, et al. Stability study of large-area perovskite solar cells fabricated with copper as low-cost metal contact. J. Energy Res., 2022, 46(2): 1250.
DOI URL |
[3] |
YUE M, YUE H, ANYI M, et al. Application of lead acetate additive for printable perovskite solar cell. J. Inorg. Mater., 2022, 37(2): 197.
DOI |
[4] |
LAURA M G, DANIEL R, FRANKLIN J. Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. J. Energy Chem., 2021, 68: 222.
DOI URL |
[5] |
LIU S, HUANG W, LIAO P, et al. 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. J. Mater. Chem. A, 2017, 5(44): 22952.
DOI URL |
[6] |
JAYAN K D, SEBASTIAN V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy, 2021, 217: 40.
DOI URL |
[7] |
WANG J, ZHENG Z, ZU Y, et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater., 2021, 33(39): 2102787.
DOI URL |
[8] |
WANG H, HUANG Z, XIAO S, et al. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A, 2021, 9(9): 5759.
DOI URL |
[9] |
XU X, LIU Z, ZUO Z, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett., 2015, 15(4): 2402.
DOI PMID |
[10] |
CAO K, ZUO Z, CUI J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17: 171.
DOI URL |
[11] |
LIU X, REN S, LI Z, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv. Funct. Mater., 2022, 32(38): 2202951.
DOI URL |
[12] |
TAO L, ZHANG Y, CHEN H, et al. Printable commercial carbon based mesoscopic perovskite solar cell using NiO/graphene as hole-transport materials. ECS J. Solid State Sci. Technol., 2021, 10(10): 105003.
DOI |
[13] |
BHANDARI S, ROY A, ALI M S, et al. Cotton soot derived carbon nanoparticles for NiO supported processing temperature tuned ambient perovskite solar cells. Sci. Rep., 2021, 11: 23388.
DOI PMID |
[14] |
JIANG F, CHOY W C H, LI X, et al. Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater., 2015, 27(18): 2930.
DOI URL |
[15] |
LEE J H, JIN I S, JUNG J W. Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chem. Eng. J., 2021, 420: 129678.
DOI URL |
[16] |
HOU X M, HU Y, LIU H W, et al. Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A, 2017, 5(1): 73.
DOI URL |
[17] |
ZHAO J J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2022, 41(1): 96.
DOI |
[18] | LIU Z, SUN B, LIU X, et al. Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett., 2018, 10(2): 34. |
[19] |
TSUJI R, BOGACHUK D, LUO B, et al. Activation of weak monochromic photocurrents by white light irradiation for accurate IPCE measurements of carbon-based multi-porous-layered-electrode perovskite solar cells. Electrochemistry, 2020, 88(5): 418.
DOI URL |
[20] |
LIU X, CHENG Y, LIU C, et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci., 2019, 12(5): 1622.
DOI URL |
[21] |
LIAO P, ZHAO X, LI G, et al. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett., 2018, 10: 5.
DOI PMID |
[22] |
KE W, FANG G, WAN J, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun., 2015, 6: 6700.
DOI PMID |
[23] |
WANG Y, MAHMOUDI T, HAHN Y B. Highly stable and efficient perovskite solar cells based on FAMA-perovskite-Cu:NiO composites with 20.7% efficiency and 80.5% fill factor. Adv. Energy Mater., 2020, 10(27): 2000967.
DOI URL |
[24] |
LEGUY A M A, FROST J M, MCMAHON A P, et al. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun., 2015, 6: 7124.
DOI PMID |
[25] |
CAI C, ZHOU K, GUO H, et al. Enhanced hole extraction by NiO nanoparticles in carbon-based perovskite solar cells. Electrochim. Acta, 2019, 312: 100.
DOI URL |
[26] |
LIU S, LI S, WU J, et al. Amide additives induced a Fermi level shift to improve the performance of hole-conductor-free, printable mesoscopic perovskite solar cells. J. Phy. Chem. Lett., 2019, 10(21): 6865.
DOI URL |
[27] |
LI X, ZHANG W, GUO X, et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 2022, 375(6579): 434.
DOI PMID |
[28] |
ZHOU Y, ZHANG X, LU X, et al. Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells. Solar RRL, 2019, 3(4): 1800315.
DOI URL |
[29] |
CHEN X, LU L, GU D, et al. Chlorine management of a carbon counter electrode for high performance printable perovskite solar cells. J. Mater. Chem. C, 2021, 9(27): 8615.
DOI URL |
[1] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[2] | 胡忠良, 傅赟天, 蒋蒙, 王连军, 江莞. Nb/Mg3SbBi界面层热稳定性研究[J]. 无机材料学报, 2023, 38(8): 931-937. |
[3] | 刘建, 王凌坤, 许保亮, 赵倩, 王耀萱, 丁艺, 张胜泰, 段涛. 熔盐法低温合成掺钕ZrSiO4陶瓷的物相演变和化学稳定性[J]. 无机材料学报, 2023, 38(8): 910-916. |
[4] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[5] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[6] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[7] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[8] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
[9] | 万家宝, 张明辉, 苏怀宇, 曹枝军, 刘学超, 谢坚生, 王祥远, 时英辉, 王亮, 雷水金. GeO2-La2O3-TiO2玻璃的结构、热学和光学性质[J]. 无机材料学报, 2023, 38(10): 1230-1236. |
[10] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[11] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
[12] | 罗世淋, 张胜泰, 许保亮, 王凌坤, 段思逸菡, 丁艺, 赵倩, 段涛. YIG陶瓷对三价锕系模拟核素的固化行为研究[J]. 无机材料学报, 2022, 37(7): 757-763. |
[13] | 刘鼎伟, 曾江涛, 郑嘹赢, 满振勇, 阮学政, 时雪, 李国荣. BiAlO3掺杂PZT陶瓷的高压电性能和低电场应变滞后[J]. 无机材料学报, 2022, 37(12): 1365-1370. |
[14] | 王烈林, 谢华, 谢宇骐, 胡平涛, 尹雯, 任馨玥, 丁芸. Nd2Zr2O7烧绿石A、B位晶格固化钍的结构演化及化学稳定性研究[J]. 无机材料学报, 2022, 37(10): 1073-1078. |
[15] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||