无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1205-1211.DOI: 10.15541/jim20240132 CSTR: 32189.14.10.15541/jim20240132
所属专题: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
厉佥元1(), 李纪伟1, 张钰涵2, 刘焱康1, 孟阳1, 储余1, 朱一佳1, 徐诺言1, 朱亮1, 张传香2(
), 陶海军1(
)
收稿日期:
2024-03-20
修回日期:
2024-05-29
出版日期:
2024-11-20
网络出版日期:
2024-07-15
通讯作者:
陶海军, 副教授. E-mail: taohaijun@nuaa.edu.cn;作者简介:
厉佥元(1999-), 男, 硕士研究生. E-mail: liqianyuan@nuaa.edu.cn
LI Qianyuan1(), LI Jiwei1, ZHANG Yuhan2, LIU Yankang1, MENG Yang1, CHU Yu1, ZHU Yijia1, XU Nuoyan1, ZHU Liang1, ZHANG Chuanxiang2(
), TAO Haijun1(
)
Received:
2024-03-20
Revised:
2024-05-29
Published:
2024-11-20
Online:
2024-07-15
Contact:
TAO Haijun, associate professor. E-mail: taohaijun@nuaa.edu.cn;About author:
LI Qianyuan (1999-), male, Master candidate. E-mail: liqianyuan@nuaa.edu.cn
摘要:
碳基钙钛矿太阳能电池(C-PSCs)具有高光电转换效率(PCE)、长期稳定、低成本优势, 有助于实现钙钛矿太阳能电池(PSCs)商业化。本工作在TiO2致密电子传输层(c-TiO2)上原位生成PbTiO3, 研究了PbTiO3修饰和极化处理对C-PSCs光伏性能的促进作用。研究发现, 反应30 s制备的PbTiO3不仅能够有效地抑制电子传输层的电阻增长, 而且将界面处载流子积聚下降至29.7%, 大幅度提升了载流子分离能力。此外, 进一步极化处理c-TiO2/PbTiO3层可以将载流子积聚下降至6.78%, 使得PSCs的开路电压(Voc)达到0.93 V, 短路电流密度(Jsc)达到14.83 mA/cm2, 填充因子(FF)达到51.16%, PCE达到7.11%。本工作系统研究了PbTiO3修饰和极化处理的方法, 提出了改善C-PSCs性能的研究策略, 揭示了优化载流子传输性能的内在机制, 为开发高效率、低成本和长寿命的商业化PSCs提供了经验借鉴。
中图分类号:
厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211.
LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment[J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211.
图4 不同反应时间下c-TiO2/PbTiO3层的(a)紫外-可见光透过率谱图和(b)暗态伏安曲线
Fig. 4 (a) UV-visible transmittance spectra and (b) I-V curves under dark state of c-TiO2/PbTiO3 layers with different reaction time Colorful figures are available on website
Reaction time/s | R/Ω | ρ/(Ω·cm) | σ/(mS·cm-1) |
---|---|---|---|
0 | 22.61 | 5.65×105 | 1.77×10-3 |
10 | 23.64 | 5.91×105 | 1.69×10-3 |
30 | 24.89 | 6.22×105 | 1.61×10-3 |
120 | 28.98 | 7.24×105 | 1.38×10-3 |
300 | 55.20 | 13.79×105 | 7.25×10-4 |
表1 不同反应时间下c-TiO2/PbTiO3层的电导率
Table 1 Conductivities of c-TiO2/PbTiO3 layers with different reaction time
Reaction time/s | R/Ω | ρ/(Ω·cm) | σ/(mS·cm-1) |
---|---|---|---|
0 | 22.61 | 5.65×105 | 1.77×10-3 |
10 | 23.64 | 5.91×105 | 1.69×10-3 |
30 | 24.89 | 6.22×105 | 1.61×10-3 |
120 | 28.98 | 7.24×105 | 1.38×10-3 |
300 | 55.20 | 13.79×105 | 7.25×10-4 |
Reaction time/s | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 13.84 | 51.51 | 6.26 |
10 | 0.88 | 13.92 | 51.55 | 6.31 |
30 | 0.89 | 14.12 | 51.77 | 6.49 |
120 | 0.93 | 11.99 | 52.56 | 5.88 |
300 | 0.94 | 9.81 | 42.00 | 3.85 |
表2 基于不同反应时间c-TiO2/PbTiO3层的PSCs光伏参数
Table 2 Photovoltaic parameters of PSCs prepared by c-TiO2/PbTiO3 layers with different reaction time
Reaction time/s | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 13.84 | 51.51 | 6.26 |
10 | 0.88 | 13.92 | 51.55 | 6.31 |
30 | 0.89 | 14.12 | 51.77 | 6.49 |
120 | 0.93 | 11.99 | 52.56 | 5.88 |
300 | 0.94 | 9.81 | 42.00 | 3.85 |
Polarization voltage/V | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 14.12 | 51.18 | 6.41 |
20 | 0.89 | 14.39 | 51.25 | 6.53 |
40 | 0.93 | 14.83 | 51.16 | 7.11 |
50 | 0.93 | 14.95 | 51.35 | 7.11 |
60 | 0.93 | 15.00 | 51.20 | 7.12 |
表3 基于不同电压极化c-TiO2/PbTiO3层的PSCs光伏参数
Table 3 Photovoltaic parameters of PSCs prepared by c-TiO2/PbTiO3 layers after polarization with different voltages
Polarization voltage/V | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 14.12 | 51.18 | 6.41 |
20 | 0.89 | 14.39 | 51.25 | 6.53 |
40 | 0.93 | 14.83 | 51.16 | 7.11 |
50 | 0.93 | 14.95 | 51.35 | 7.11 |
60 | 0.93 | 15.00 | 51.20 | 7.12 |
图7 c-TiO2与c-TiO2/PbTiO3层的Mott-Schottky曲线
Fig. 7 Mott-Schottky curves of c-TiO2 and c-TiO2/PbTiO3 layers (a) Primitive state; (b) ±40 V polarization treatment; (c) ±60 V polarization treatment; (d) Carrier concentrations
图8 c-TiO2、c-TiO2/PbTiO3层和c-TiO2/PbTiO3层极化处理后的(a)Nyquist图谱、(b)不同偏压下的复合阻抗图、(c)电压衰减曲线、(d)暗电流曲线、(e)电容-频率曲线和(f)稳态光电流输出曲线
Fig. 8 (a) Nyquist plots, (b) composite impedance plots at different bias voltages, (c) voltage attenuation curves, (d) dark current curves, (e) capacitance-frequency curves, and (f) photocurrent output curves of c-TiO2, c-TiO2/PbTiO3 and polarization-treated c-TiO2/PbTiO3 layers
[1] | XING G, MATHEWS N, SUN S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344. |
[2] | SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519. |
[3] | PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 2013, 4(15): 2423. |
[4] |
LIU C, YANG Y, CHEN H, et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810.
DOI PMID |
[5] |
ZHANG L, MEI L, WANG K, et al. Advances in the application of perovskite materials. Nano-Micro Lett., 2023, 15(1): 177.
DOI PMID |
[6] | HUANG H, CUI P, CHEN Y, et al. 24.8%-Efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 2022, 6(9): 2186. |
[7] |
SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater., 2018, 17(9): 820.
DOI PMID |
[8] | National Renewable Energy Laboratory. Best research-cell efficiency chart. [2024-03-18]. https://www.nrel.gov/pv/cell-efficiency.html. |
[9] |
ONO L K, LIU S, QI Y, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed., 2020, 59(17): 6676.
DOI PMID |
[10] |
CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev., 2019, 48(14): 3842.
DOI PMID |
[11] |
RAN C, XU J, GAO W, et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev., 2018, 47(12): 4581.
DOI PMID |
[12] | CAI Y, LIANG L, GAO P. Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin. Phys. B, 2018, 27(1): 018805. |
[13] |
ZHANG W, LUO J, LIU S, et al. Zirconia spacer: preparation by low temperature spray-coating and application in triple-layer perovskite solar cells. J. Inorg. Mater., 2023, 38(2): 213.
DOI |
[14] | FANG W, SHEN L, LI H, et al. Effect of film formation processes of NiOx mesoporous layer on performance of perovskite solar cells with carbon electrodes. J. Inorg. Mater., 2023, 38(9): 1103. |
[15] | WU W Q, CHEN D, CARUSO R A, et al. Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A, 2017, 5(21): 10092. |
[16] | ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells. Small, 2020, 16(15): 1902579. |
[17] | CHU Y H, MARTIN L W, HOLCOMB M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater., 2008, 7(6): 478. |
[18] | BO L. Investigation on photocurrent polarity of a bulk heterojunction organic photovoltaic device using a ferroelectric thin film. Acta Phys.-Chim. Sin., 2012, 28(1): 217. |
[19] |
QIN W, ALI W, WANG J, et al. Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nat. Commun., 2023, 14(1): 256.
DOI PMID |
[20] |
CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63.
DOI PMID |
[21] |
LOH L, BRISCOE J, DUNN S. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale, 2014, 6(12): 7072.
DOI PMID |
[22] |
LIU X, ZHANG Q, LI J, et al. Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement. Sci. Rep., 2018, 8(1): 17389.
DOI PMID |
[23] | FENG K, LIU X, SI D, et al. Ferroelectric BaTiO3 dipole induced charge transfer enhancement in dye-sensitized solar cells. J. Power Sources, 2017, 350: 35. |
[24] | KOVAČ I, MUŽEVIĆ M, PAJTLER M V, et al. Charge carrier dynamics across the metal oxide/BaTiO3 interfaces toward photovoltaic applications from the theoretical perspective. Surf. Interfaces, 2023, 39: 102974. |
[25] | BAO D, WU X, ZHANG L, et al. Preparation, electrical and optical properties of (Pb,Ca)TiO3 thin films using a modified Sol-Gel technique. Thin Solid Films, 1999, 350(1/2): 30. |
[26] | DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem., 2009, 19(7): 976. |
[1] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[5] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[6] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[7] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[8] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[9] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[10] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[11] | 马婷婷, 汪志鹏, 张梅, 郭敏. 超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究[J]. 无机材料学报, 2023, 38(12): 1387-1395. |
[12] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. |
[13] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[14] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[15] | 于守武, 赵泽文, 赵晋津, 肖淑娟, 师岩, 高存法, 苏晓, 胡宇翔, 赵智胜, 王婕, 王连洲. 新型光伏储电原位集成电池研究进展[J]. 无机材料学报, 2020, 35(6): 623-632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||