无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1055-1061.DOI: 10.15541/jim20220569 CSTR: 32189.14.10.15541/jim20220569
所属专题: 【信息功能】敏感陶瓷(202409); 【能源环境】钙钛矿(202409)
收稿日期:
2022-09-27
修回日期:
2022-11-29
出版日期:
2023-09-20
网络出版日期:
2022-12-27
通讯作者:
李自清, 青年副研究员. E-mail: lzq@fudan.edu.cn;作者简介:
胡 盈(1999-), 女, 硕士研究生. E-mail: huying@fudan.edu.cn
基金资助:
HU Ying1(), LI Ziqing2(
), FANG Xiaosheng1,2(
)
Received:
2022-09-27
Revised:
2022-11-29
Published:
2023-09-20
Online:
2022-12-27
Contact:
LI Ziqing, associate research fellow. E-mail: lzq@fudan.edu.cn;About author:
HU Ying (1999-), female, Master candidate. E-mail: huying@fudan.edu.cn
Supported by:
摘要:
AgBi2I7薄膜具有良好的光电特性和环境稳定性, 是构筑异质结紫外光电探测器的有力候选材料之一。本研究采用溶液法制备AgBi2I7薄膜, 通过优化前驱体溶液的浓度和溶剂类型(正丁胺和二甲基亚砜)等工艺参数, 研究了其光电探测性能。采用最优方案在宽带隙的GaN上制备AgBi2I7薄膜, 构建AgBi2I7/GaN异质结。该异质结对UVA射线具有良好的选择性探测(探测半峰宽约30 nm)。在3 V偏压和350 nm紫外光照射下, 器件开关比超过5个数量级, 达到27.51 A/W的高响应度和1.53×1014 Jones的高探测率。研究表明溶液法制备的AgBi2I7薄膜有望应用于构建高性能的异质结紫外光电探测器。
中图分类号:
胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061.
HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties[J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061.
图4 (a) ABI-B14和 (b) ABI-D16的SEM照片; (c) 不同前驱体制备的薄膜的紫外-可见光吸收光谱图
Fig. 4 SEM images of (a) ABI-B14 and (b) ABI-D16, and (c) UV-Vis absorption spectra of films from different precursors Colorful figures are available on website
图5 AgBi2I7薄膜的I-t和I-V曲线
Fig. 5 I-t and I-V curves of AgBi2I7 thin films (a, b) I-t curves of (a) ABI-Bx (x=10, 14, 18) and (b) ABI-Dy(y=14, 16, 18) at 1 V; (c, d) I-V curves of (c) ABI-B14 and (d) ABI-D16 Colorful figures are available on website
Sample | Photocurrent/nA | Dark current/nA | On/Off ratio | |
---|---|---|---|---|
ABI-B10 | 0.56 | 0.49 | 1.14 | |
ABI-B14 | 2.60 | 1.88 | 1.38 | |
ABI-B18 | 0.98 | 0.81 | 1.21 | |
ABI-D14 | 0.19 | 0.18 | 1.06 | |
ABI-D16 | 0.32 | 0.27 | 1.20 | |
ABI-D18 | 0.35 | 0.30 | 1.20 |
表1 ABI-Bx(x=10, 14, 18)和ABI-Dy(y=14, 16, 18)的光暗电流
Table 1 Photocurrents and dark currents of ABI-Bx (x=10, 14, 18) and ABI-Dy (y=14, 16, 18)
Sample | Photocurrent/nA | Dark current/nA | On/Off ratio | |
---|---|---|---|---|
ABI-B10 | 0.56 | 0.49 | 1.14 | |
ABI-B14 | 2.60 | 1.88 | 1.38 | |
ABI-B18 | 0.98 | 0.81 | 1.21 | |
ABI-D14 | 0.19 | 0.18 | 1.06 | |
ABI-D16 | 0.32 | 0.27 | 1.20 | |
ABI-D18 | 0.35 | 0.30 | 1.20 |
图6 AgBi2I7/GaN异质结的结构与光电特性
Fig. 6 Device structure and photoelectric properties of AgBi2I7/GaN heterojunctions (a) Device structure; (b) Energy diagram; (c) I-V curves; (d) I-t curves to 350 nm UV light; (e) Responsivity and detectivity; (f) Performance comparison of lead-free photodetectors Colorful figures are available on website
Photodetector | Light/nm | On/Off ratio | Responsivity/(A·W-1) | Detectivity /Jones | Ref. |
---|---|---|---|---|---|
Ag-AgBi2I7-GaN-Ag | 350 | 8.7×105 | 27.51 | 1.53×1014 | This work |
Graphene-Cs3Bi2I9-p-Si | 650 | >102 | 23.6 | 1.75×1013 | [1] |
In-GaN-Cs2AgBiBr6-NiO-Au | 365 | 1.16×103 | 0.33 | 3.28×1011 | [2] |
ITO-SnO2-CsBi3I10-Au | 650 | 2.33×105 | 0.2 | 1.8×1013 | [3] |
Graphene-CsSnI3-SnO2-ITO | 405 | 104 | 0.237 | 1.18×1012 | [4] |
FTO-SnO2-Ag2BiI5-carbon | 473 | 6.25×105 | 0.3 | 5.3×1012 | [5] |
ITO-SnO2-Cs3Bi2I9-PTAA-Au-ITO | 405 | 5.7×103 | 0.052 | >1012 | [6] |
Au-CsCu2I3/GaN-In | 325 | 1.1×104 | 0.37 | 1.83×1013 | [7] |
Au-Cs3Sb2I9-Au | 450 | 5.5×103 | 0.446 | 1.27 × 1011 | [8] |
表S1 典型无铅钙钛矿光电探测器光电性能总结
Table S1 Summary of optoelectronic performances of typical lead-free perovskite photodetectors
Photodetector | Light/nm | On/Off ratio | Responsivity/(A·W-1) | Detectivity /Jones | Ref. |
---|---|---|---|---|---|
Ag-AgBi2I7-GaN-Ag | 350 | 8.7×105 | 27.51 | 1.53×1014 | This work |
Graphene-Cs3Bi2I9-p-Si | 650 | >102 | 23.6 | 1.75×1013 | [1] |
In-GaN-Cs2AgBiBr6-NiO-Au | 365 | 1.16×103 | 0.33 | 3.28×1011 | [2] |
ITO-SnO2-CsBi3I10-Au | 650 | 2.33×105 | 0.2 | 1.8×1013 | [3] |
Graphene-CsSnI3-SnO2-ITO | 405 | 104 | 0.237 | 1.18×1012 | [4] |
FTO-SnO2-Ag2BiI5-carbon | 473 | 6.25×105 | 0.3 | 5.3×1012 | [5] |
ITO-SnO2-Cs3Bi2I9-PTAA-Au-ITO | 405 | 5.7×103 | 0.052 | >1012 | [6] |
Au-CsCu2I3/GaN-In | 325 | 1.1×104 | 0.37 | 1.83×1013 | [7] |
Au-Cs3Sb2I9-Au | 450 | 5.5×103 | 0.446 | 1.27 × 1011 | [8] |
[1] |
MENG G, YE Y, FAN L, et al. Recent progress of halide perovskite radiation detector materials. J. Inorg. Mater., 2020, 35(11): 1203.
DOI |
[2] |
LI Z Q, Li, Z L, Shi Z F, et al. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure. Adv. Funct. Mater., 2020, 30(28): 2002634.
DOI URL |
[3] |
WANG X, ZHANG T, LOU Y, et al. All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front., 2019, 3(3): 365.
DOI URL |
[4] |
BU H, HE C, XU Y, et al. Emerging new-generation detecting and sensing of metal halide perovskites. Adv. Electron. Mater., 2022, 8(5): 2101204.
DOI URL |
[5] |
PERVEEN A, HUSSAIN S, XU Y, et al. Solution processed and highly efficient UV-photodetector based on CsPbBr3 perovskite- polymer composite film. J. Photochem. Photobiol. A, 2022, 426: 113764.
DOI URL |
[6] |
ZHU T, SHEN L, ZHANG D, et al. Solution-processed ternary perovskite-organic broadband photodetectors with ultrahigh detectivity. ACS Appl. Mater. Interfaces, 2022, 14(16): 18744.
DOI URL |
[7] |
YANG X, ZHONG S, WANG K, et al. Study of resistive switching and biodegradability in ultralow power memory device based on all-inorganic Ag/AgBi2I7/ITO structure. Adv. Mater. Interfaces, 2022, 9(17): 2200237.
DOI URL |
[8] |
TURKEVYCH I, KAZAOUI S, ITO E, et al. Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. ChemSusChem, 2017, 10(19): 3754.
DOI PMID |
[9] |
LI Z Q, LIU X Y, ZUO C L, et al. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors. Adv. Mater., 2021, 33(41): 2103010.
DOI URL |
[10] |
WANG J, LI Y, MA L, et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Adv. Funct. Mater., 2022, 32(30): 2203072.
DOI URL |
[11] |
PREMKUMAR S, LIU D, ZHANG Y, et al. Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater., 2020, 3(9): 9141.
DOI URL |
[12] |
KIM Y, YANG Z, JAIN A, et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed., 2016, 55(33): 9586.
DOI URL |
[13] |
KULKARNI A, JENA A K, IKEGAMI M, et al. Performance enhancement of AgBi2I7 solar cells by modulating a solvent- mediated adduct and tuning remnant BiI3 in one-step crystallization. Chem. Comm., 2019, 55(28): 4031.
DOI URL |
[14] |
IYODA F, NISHIKUBO R, WAKAMIYA A, et al. Ag-(Bi, Sb, In, Ga)-I solar cells: impacts of elemental composition and additives on the charge carrier dynamics and crystal structures. ACS Appl. Energy Mater., 2020, 3(9): 8224.
DOI URL |
[15] |
SEO Y, HA S R, YOON S, et al. Dynamic casting in combination with ramped annealing process for implementation of inverted planar Ag3BiI6 rudorffite solar cells. J. Power Sources, 2020, 453: 227903.
DOI URL |
[16] |
SHAO Z P, LE MERCIER T, MADEC M B, et al. AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection. Mater. Lett., 2018, 221: 135.
DOI URL |
[17] | JIN S Y, DONG-WON K. Optimization of bismuth-based inorganic thin films for eco-friend, Pb-free perovskite solar cells. J. Electr. Eng. Technol., 2018, 31(2): 117. |
[18] |
SHADABROO M S, ABDIZADEH H, SHABANI M, et al. Solvent engineering for controlled crystallization and growth of all-inorganic Pb-free rudorffite absorbers of perovskite solar cells. Inorg. Chem., 2021, 60(15): 11110.
DOI URL |
[19] |
ABDUL AMIR H A A, FAKHRI M A, ALWAHIB A A, et al. Synthesis of gallium nitride nanostructure using pulsed laser ablation in liquid for photoelectric detector. Mater. Sci. Semicond. Process, 2022, 150: 106911.
DOI URL |
[20] |
ZHANG M, LUO Q, SHENG C, et al. Space-confined growth of large-mismatch CsPb(BrxCI1-x)3/GaN heterostructures with tunable band alignments and optical properties. Inorg. Chem. Front., 2022, 9(18): 4661.
DOI URL |
[21] |
SONG W, CHEN J, LI Z L, et al. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater., 2021, 33(27): 2101059.
DOI URL |
[22] |
MASHADIEVA L F, ALIEV Z S, SHEVELKOV A V, et al. Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases. J. Alloys Compd., 2013, 551: 512.
DOI URL |
[23] | ZHANG Z M, FANG X S. Preparation and photodetection property of ZnO nanorods/ZnCo2O4 nanoplates heterojunction. J. Inorg. Mater., 2019, 34(9): 991. |
[24] |
XUE X, LU C, LUO M, et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting. Sci. China Mater., 2022, 66(1): 127.
DOI |
[1] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[2] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[3] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[4] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[5] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[6] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[7] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[8] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
[9] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[10] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[11] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[12] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[13] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[14] | 赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998. |
[15] | 许世超,朱天哲,乔阳,白学健,唐楠,郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839-846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||