无机材料学报 ›› 2024, Vol. 39 ›› Issue (4): 359-366.DOI: 10.15541/jim20230424 CSTR: 32189.14.10.15541/jim20230424
所属专题: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
收稿日期:
2023-09-18
修回日期:
2023-11-29
出版日期:
2024-04-20
网络出版日期:
2023-12-19
通讯作者:
艾希成, 教授. E-mail: xcai@ruc.edu.cn作者简介:
于 嫚(1989−), 女, 博士. E-mail: yuman@xaau.edu.cn
基金资助:
YU Man1(), GAO Rongyao2, QIN Yujun2, AI Xicheng2(
)
Received:
2023-09-18
Revised:
2023-11-29
Published:
2024-04-20
Online:
2023-12-19
Contact:
AI Xicheng, professor. E-mail: xcai@ruc.edu.cnAbout author:
YU Man (1989-), female, PhD. E-mail: yuman@xaau.edu.cn
Supported by:
摘要:
迟滞效应是影响钙钛矿太阳能电池性能和稳定性的重要问题, 离子迁移和由此产生的界面离子积累是引起迟滞效应最重要的原因之一。本研究采用上转换发光纳米材料(Upconversion Luminescent Nanoparticles, UCNP)修饰电子传输层/钙钛矿活性层的界面及本征钙钛矿活性层, 系统探究了UCNP对钙钛矿的形貌、结构、光谱/光电性能和离子迁移动力学的影响。结果表明: 钙钛矿活性层经过UCNP修饰后器件的光电转换效率(Power Conversion Efficiency, PCE)最佳(16.27%), 而且迟滞因子(Hysteresis Factor, HF)得到显著改善(0.05)。进一步采用回路切换瞬态光电技术系统探究了钙钛矿太阳能电池不受光生载流子干扰的离子迁移动力学过程, 证明UCNP在光电转换过程中起到抑制离子累积和迁移的双重作用: 一方面UCNP可以形成阻隔层, 阻碍离子累积; 另一方面, UCNP可以在退火过程中进入到钙钛矿体相晶界处, 阻碍离子迁移, 使恢复电压从0.43 V降低到0.28 V。极化诱导缺陷态模型解释了离子-载流子相互作用机制, 阐释了UCNP抑制钙钛矿光伏器件迟滞效应的机理。本研究可以为调控钙钛矿太阳能电池迟滞提供一种有效的解决方案。
中图分类号:
于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366.
YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(4): 359-366.
图2 (a) Compact/PVK、(b) UCNP+Compact/PVK、(c) Compact/ PVK+UCNP和(d) UCNP+Compact/PVK+UCNP的SEM照片
Fig. 2 SEM images of (a) Compact/PVK, (b) UCNP+ Compact/PVK, (c) Compact/PVK+UCNP, and (d) UCNP+ Compact/PVK+UCNP
图3 Compact/PVK、UCNP+Compact/PVK、Compact/PVK+ UCNP和UCNP+Compact/PVK+UCNP的XRD图谱
Fig. 3 XRD patterns of Compact/PVK, UCNP+Compact/PVK, Compact/PVK+UCNP, and UCNP+Compact/PVK+UCNP samples
图4 (a)基于石英基底的本征钙钛矿薄膜的紫外-可见吸收光谱和稳态荧光光谱图, 以及(b)四种钙钛矿薄膜样品的时间分辨荧光光谱图
Fig. 4 (a) UV-Vis absorption and steady-state fluorescence spectra of perovskite films deposited on quartz substrates, and (b) time resolved fluorescence spectra of four perovskite thin films
图5 (a) Compact/PVK、(b) UCNP+Compact/PVK、(c) Compact/PVK+UCNP和(d)UCNP+Compact/PVK+UCNP钙钛矿太阳能电池在正扫和反扫条件下的最佳J-V曲线
Fig. 5 J-V curves under forward and reverse scanning conditions for perovskite solar cells with champion performances of (a) Compact/PVK, (b) UCNP+Compact/PVK, (c) Compact/PVK+UCNP, and (d) UCNP+Compact/PVK+UCNP
Sample | Scan direction | Open-circuit voltage/ mV | Short-circuit current/ (mA·cm-2) | FF/% | PCE/% | HF |
---|---|---|---|---|---|---|
Compact/PVK | Reverse | 996 | 19.56 | 63.45 | 12.36 | 0.42 |
Forward | 912 | 17.89 | 44.13 | 7.20 | ||
UCNP+Compact/PVK | Reverse | 1038 | 20.37 | 0.74 | 15.65 | 0.07 |
Forward | 1045 | 19.84 | 0.70 | 14.52 | ||
Compact/PVK+UCNP | Reverse | 1034 | 20.96 | 0.75 | 16.27 | 0.05 |
Forward | 1032 | 20.39 | 0.73 | 15.37 | ||
UCNP+Compact/PVK+UCNP | Reverse | 1016 | 18.31 | 0.66 | 12.28 | 0.15 |
Forward | 976 | 17.76 | 0.60 | 10.40 |
表1 四种钙钛矿器件正反扫条件下的光伏参数及HF
Table 1 Photovoltaic parameters and hysteresis factors (HF) of four perovskite devices upon forward and reverse scanning conditions
Sample | Scan direction | Open-circuit voltage/ mV | Short-circuit current/ (mA·cm-2) | FF/% | PCE/% | HF |
---|---|---|---|---|---|---|
Compact/PVK | Reverse | 996 | 19.56 | 63.45 | 12.36 | 0.42 |
Forward | 912 | 17.89 | 44.13 | 7.20 | ||
UCNP+Compact/PVK | Reverse | 1038 | 20.37 | 0.74 | 15.65 | 0.07 |
Forward | 1045 | 19.84 | 0.70 | 14.52 | ||
Compact/PVK+UCNP | Reverse | 1034 | 20.96 | 0.75 | 16.27 | 0.05 |
Forward | 1032 | 20.39 | 0.73 | 15.37 | ||
UCNP+Compact/PVK+UCNP | Reverse | 1016 | 18.31 | 0.66 | 12.28 | 0.15 |
Forward | 976 | 17.76 | 0.60 | 10.40 |
图6 不同钙钛矿太阳能电池的(a)开路光电压上升曲线和(b) cs-TPT动力学曲线
Fig. 6 (a) Open-circuit photovoltage buildup curves and (b) cs-TPT kinetics curves of different perovskite solar cells
图S1 (a) cs-TPT装置示意图[1](ND filter: neutral density filter, DUT: device under test, Sync.: synchronizing, Trig.: trigger, Sig. = signal); (b)典型cs-TPT设置(Trigger, Laser, VG, and RS)的时间序列
Fig. S1 (a) Schematic illustration of the cs-TPT setup ](ND filter: neutral density filter, DUT: device under test, Sync.: synchronizing, Trig.: trigger, Sig.= signal); (b) Time sequences of typical cs-TPT settings (Trigger, Laser, VG, and RS)
图S4 980 nm激光照射(a) UCNP+Compact/PVK、(b) Compact/PVK+UCNP和(c) UCNP+Compact/PVK+UCNP的照片
Fig. S4 Pictures of (a) UCNP+Compact/PVK, (b) Compact/PVK+UCNP and (c) UCNP+Compact/PVK+UCNP irradiated with 980 nm laser
Sample | S2(PCEreverse) | S2(PCEforward) | S2(HF) |
---|---|---|---|
Compact/PVK | 0.55956 | 0.58046 | 0.01156 |
UCNP+Compact/PVK | 0.41318 | 0.40968 | 0.01130 |
Compact/PVK+UCNP | 0.25838 | 0.33691 | 0.00810 |
UCNP+Compact/PVK+UCNP | 0.19304 | 0.96262 | 0.01451 |
表S1 四种电池的HF和正反扫条件下的PCE的方差
Table S1 HF and variance of PCE under forward and reverse scanning conditions of cells
Sample | S2(PCEreverse) | S2(PCEforward) | S2(HF) |
---|---|---|---|
Compact/PVK | 0.55956 | 0.58046 | 0.01156 |
UCNP+Compact/PVK | 0.41318 | 0.40968 | 0.01130 |
Compact/PVK+UCNP | 0.25838 | 0.33691 | 0.00810 |
UCNP+Compact/PVK+UCNP | 0.19304 | 0.96262 | 0.01451 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.
DOI PMID |
[3] |
KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[4] |
JIANG Q, TONG J, XIAN Y, et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 2022, 611(7935): 278.
DOI |
[5] |
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616: 724.
DOI |
[6] |
SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. Journal of Physical Chemistry Letters, 2014, 5(13): 2189.
DOI PMID |
[7] |
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519.
DOI URL |
[8] |
SUM T C, MATHEWS N, XING G, et al. Spectral features and charge dynamics of lead halide perovskites: origins and interpretations. Accounts of Chemical Research, 2016, 49(2): 294.
DOI PMID |
[9] |
LI Q, ZHENG Y C, WEI Z P, et al. Halide diffusion equilibrium and its impact on efficiency evolution of perovskite solar cells. Advanced Energy Materials, 2022, 12(48): 2202982.
DOI URL |
[10] |
HE J J, LIU J X, HOU Y, et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications, 2020, 11: 4237.
DOI PMID |
[11] |
SHAO Y H, XIAO Z G, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5: 5784.
DOI |
[12] |
LIU S, GUAN Y J, SHENG Y S, et al. A review on additives for halide perovskite solar cells. Advanced Energy Materials, 2019, 10(13): 1902492.
DOI URL |
[13] |
KANG D H, PARK N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214.
DOI URL |
[14] |
KE W J, XIAO C X, WANG C L, et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Advanced Materials, 2016, 28(26): 5214.
DOI URL |
[15] |
LIU P Y, WANG W, LIU S M, et al. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Advanced Energy Materials, 2019, 9(13): 1803017.
DOI URL |
[16] |
FROST J M, WALSH A. What is moving in hybrid halide perovskite solar cells? Accounts of Chemical Research, 2016, 49(3): 528.
DOI PMID |
[17] |
ROTHMANN M U, LI W, ZHU Y, et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nature Communications, 2017, 8: 14547.
DOI |
[18] |
KENNARD R M, DAHLMAN C J, DECRESCENT R A, et al. Ferroelastic hysteresis in thin films of methylammonium lead iodide. Chemistry of Materials, 2021, 33: 298.
DOI URL |
[19] |
WEI J, ZHAO Y, LI H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(21): 3937.
DOI PMID |
[20] |
MIYANO K, YANAGIDA M, TRIPATHI N, et al. Hysteresis, stability, and ion migration in lead halide perovskite photovoltaics. Journal of Physical Chemistry Letters, 2016, 7(12): 2240.
DOI PMID |
[21] |
BI E, CHEN H, XIE F, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nature Communications, 2017, 8: 15330.
DOI PMID |
[22] |
XIA G Z, HUANG B Y, ZHANG Y, et al. Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: resolving the role of polarization and ionic migration. Advanced Materials, 2019, 31(36): 1902870.
DOI URL |
[23] |
LIAN X M, ZUO L J, CHEN B W, et al. Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy Environmental Science, 2022, 15(6): 2499.
DOI URL |
[24] |
LOU F, YUAN S, WANG X, et al. Distinguishing the migration time scale of ion species in perovskite solar cells. Chemical Physics Letters, 2022, 796: 139570.
DOI URL |
[25] |
WANG H Y, ZHAO J S, LI Y S, et al. Diffusion dynamics of mobile ions hidden in transient optoelectronic measurement in planar perovskite solar cells. ACS Applied Energy Materials, 2020, 3(9): 8330.
DOI URL |
[26] |
ZHONG Y, HUFNAGEL M, THELAKKAT M, et al. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Advanced Functional Materials, 2020, 30(23): 1908920.
DOI URL |
[27] |
LI J X, MENG X C, HUANG Z Q, et al. A regularity-based fullerene interfacial layer for efficient and stable perovskite solar cells via blade-coating. Advanced Functional Materials, 2022, 32(1): 2105917.
DOI URL |
[28] |
YU M, WANG H Y, ZHAO J S, et al. The influence of fullerene on hysteresis mechanism in planar perovskite solar cells. Chemical Physics Letters, 2020, 750: 137443.
DOI URL |
[29] |
LI C, WANG A, XIE L, et al. Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7(42): 24150.
DOI URL |
[30] |
ZHAO Y P, YAVUZ I, WANG M H, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21(12): 1396.
DOI |
[31] |
LIANG T, FU M, LI M, et al. Application of upconversion photoluminescent materials in perovskite solar cells: opportunities and challenges. Materials Today Energy, 2021, 21: 100740.
DOI URL |
[32] |
WANG Y, WANG H Y, HAN J, et al. The influence of structural configuration on charge accumulation, transport, recombination, and hysteresis in perovskite solar cells. Energy Technology, 2017, 5(3): 442.
DOI URL |
[33] |
WANG Y, WANG H Y, YU M, et al. Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17(44): 29501.
DOI PMID |
[34] |
WANG Y, WU D P, FU L M, et al. Density of state determination of two types of intra-gap traps in dye-sensitized solar cell and its influence on device performance. Physical Chemistry Chemical Physics, 2014, 16(23): 11626.
DOI URL |
[35] |
KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867.
DOI PMID |
[36] |
WANG W, ZHOU J, TANG W. Passivation strategies of perovskite film defects for solar cells. Journal of Inorganic Materials, 2021, 37(2): 129.
DOI URL |
[37] |
KIM H S, JANG I H, AHN N, et al. Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. Journal of Physical Chemistry Letters, 2015, 6(22): 4633.
DOI URL |
[38] |
NEMNES G A, BESLEAGE C, STANCU V, et al. Normal and inverted hysteresis in perovskite solar cells. Journal of Physical Chemistry C, 2017, 121(21): 11207.
DOI URL |
[39] |
YUAN S, WANG H Y, LOU F G, et al. Polarization-induced trap states in perovskite solar cells revealed by circuit-switched transient photoelectric technique. Journal of Physical Chemistry C, 2022, 126(7): 3696.
DOI URL |
[40] |
YUAN S, LOU F G, LI Y Y, et al. Targeted suppression of hysteresis effect in perovskite solar cells through the inhibition of cation migration. Applied Physics Letters, 2023, 122(13): 133502.
DOI URL |
[41] |
MIAO S, YUAN S, ZHU D, et al. Mesoporous TiO2 layer suppresses ion accumulation in perovskite solar cells. Physical Chemistry Chemical Physics, 2022, 24(35): 20689.
DOI URL |
[42] |
LI Y Y, YUAN S, MIAO S S, et al. Uncovering the influence of cation composition engineering on the ion migration kinetics in perovskite solar cells. Journal of Physical Chemistry C, 2023, 127(30): 14679.
DOI URL |
[1] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[5] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[6] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[7] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[8] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[9] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[10] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[11] | 马婷婷, 汪志鹏, 张梅, 郭敏. 超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究[J]. 无机材料学报, 2023, 38(12): 1387-1395. |
[12] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. |
[13] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[14] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[15] | 于守武, 赵泽文, 赵晋津, 肖淑娟, 师岩, 高存法, 苏晓, 胡宇翔, 赵智胜, 王婕, 王连洲. 新型光伏储电原位集成电池研究进展[J]. 无机材料学报, 2020, 35(6): 623-632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||