无机材料学报 ›› 2024, Vol. 39 ›› Issue (4): 449-456.DOI: 10.15541/jim230501 CSTR: 32189.14.10.15541/jim230501

所属专题: 【能源环境】钙钛矿(202409)

• 研究快报 • 上一篇    

Pb2+对掺杂硼硅酸盐玻璃中CsPbBr3钙钛矿量子点发光性能的影响

岳仔豪1,2(), 杨小兔1, 张正亮1, 邓瑞翔1(), 张涛1(), 宋力昕1,2   

  1. 1.中国科学院 上海硅酸盐研究所, 上海200050
    2.上海科技大学 物质科学与技术学院, 上海 201210

Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots

YUE Zihao1,2(), YANG Xiaotu1, ZHANG Zhengliang1, DENG Ruixiang1(), ZHANG Tao1(), SONG Lixin1,2   

  1. 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

摘要:

硼硅酸盐玻璃包覆钙钛矿CsPbBr3量子点(PQDs@glass)能够大幅提高PQDs的稳定性, 使其在LED照明和显示技术中拥有广泛的应用空间。然而, 玻璃包覆的同时也导致了PQDs发光强度与量子产率降低。本工作为提高其发光强度探讨了热诱导温度及Pb2+的含量对PQDs@glass结构的影响,当热诱导温度为460 ℃,Pb2+浓度为6 mol时,其发光强度最高。研究发现,Pb2+浓度的增加会导致玻璃网状结构的致密化,改变玻璃组分的扩散行为,影响PQDs的析晶过程,导致PQDs@glass发光强度的变化。本工作得到量子产率高达95.6%的PQDs@glass,并实现了硼硅酸盐玻璃基质内PQDs的尺寸可控制备。结果表明, PQDs尺寸分布在10 nm左右, 超过86%的颗粒尺寸在6~14 nm内, 且具有优越的稳定性, 经历10次室温至200 ℃热循环后, 发光强度仍能保持初始强度的98.9%。最后, 为了验证其在LED照明及显示领域的应用, 将制备的量子点微晶玻璃粉料与二甲基硅氧烷(PDMS)混合, 得到的LED器件性能优异, 色域范围覆盖110% sRGB。本研究为PQDs@glass的大规模制备及其在LED器件领域的应用奠定了基础。

关键词: CsPbBr3, Pb2+, LED, 量子点, 硼硅酸盐玻璃

Abstract:

Perovskite CsPbBr3 quantum dots (PQDs) encapsulated within borosilicate glass can markedly improve their stability, expanding their applicability in sectors under lighting and display of light emitting diode (LED). However, this encapsulation has unintended consequence of reducing both the photoluminescence (PL) intensity and PL quantum yields (PLQY). This research aims to enhance the PL intensity of CsPbBr3 perovskite quantum dots glass (PQDs@glass) by exploring the effects of thermal induction temperature and Pb2+ content on its structural properties. The results demonstrate that the optimal thermal induction temperature for maximizing PL intensity is 460 ℃, with a Pb2+ concentration of 6 mol. The study revealed that the increase in Pb2+ concentration led to the densification of the glass network structure and altered the diffusion behavior of glass components. This alteration affected the crystallization process of PQDs, which ultimately resulted in variations in the luminous intensity of PQDs@glass. This study achieved a highly desirable PLQY of 95.6% for PQDs@glass and successfully carried out size-controllable preparation of PQDs within a borosilicate glass matrix. Remarkably, the obtained results show that over 86% of the obtained PQDs particles fall within a narrow size range of 6-14 nm with average diameter of 10 nm, leading to a well-defined size distribution. Notably, these PQDs exhibit exceptional stability, as evidenced by their ability to retain an extraordinary 98.9% of the initial emission intensity following ten consecutive thermal cycles spanning from room temperature to 200 ℃. Finally, to verify its applicability in LED lighting and display, the obtained PQDs@glass powder was blended with polydimethylsiloxane (PDMS), yielding exemplary LED devices which exhibit an exceptional color gamut range surpassing 110% of the standard RGB (sRGB) color space. In conclusion, this study lays the groundwork for the scalable synthesis of PQDs@glass and paves the way for its utilization in the realm of LED device technology.

Key words: CsPbBr3, Pb2+, LED, quantum dot, borosilicate glass

中图分类号: