无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1076-1082.DOI: 10.15541/jim20230050
所属专题: 【能源环境】钙钛矿(202310); 【能源环境】太阳能电池(202310)
丁统顺1(), 丰平2(), 孙学文1, 单沪生1, 李琪2, 宋健1()
收稿日期:
2023-02-01
修回日期:
2023-04-02
出版日期:
2023-09-20
网络出版日期:
2023-05-04
通讯作者:
丰 平, 博士. E-mail: ping.feng@solarspace.cn;作者简介:
丁统顺(1998-), 男, 硕士研究生. E-mail: TS21180067P31@cumt.edu.cn
基金资助:
DING Tongshun1(), FENG Ping2(), SUN Xuewen1, SHAN Husheng1, LI Qi2, SONG Jian1()
Received:
2023-02-01
Revised:
2023-04-02
Published:
2023-09-20
Online:
2023-05-04
Contact:
FENG Ping, PhD. E-mail: ping.feng@solarspace.cn;About author:
DING Tongshun (1998-), male, Master candidate. E-mail: TS21180067P31@cumt.edu.cn
Supported by:
摘要:
有机-无机杂化钙钛矿具有高的光吸收系数、可调节的带隙以及双极性的电荷传导特性, 是一种理想的光吸收材料。然而, 溶液法制备的钙钛矿薄膜在表/界面上存在多种缺陷, 会抑制载流子传输并引发复合。本研究选用含多官能团的氨基酸衍生物——9-芴甲氧羰基-L-苯丙氨酸-L-苯丙氨酸(Fmoc-FF-OH)作为添加剂来降低钙钛矿膜缺陷并抑制晶界上的载流子复合。结果表明, 当Fmoc-FF-OH的浓度为0.6 g·L-1时, 钙钛矿薄膜的粒径从138 nm增大到210 nm, 缺陷态密度从2.46×1015 cm-3降低至2.17×1015 cm-3。同时, 钙钛矿太阳能电池也表现出最优的性能, 开路电压从1.05 V提升到1.10 V, 器件的光电转化效率(PCE)从15.50%提升到17.44%。在220 h的稳定性测试中, 器件的光电转化效率仍能维持初始的71%。
中图分类号:
丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082.
DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance[J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082.
图1 (a) Fmoc-FF-OH的分子结构和 (b)添加不同浓度Fmoc-FF-OH的钙钛矿薄膜XRD图谱
Fig. 1 (a) Molecular structure of Fmoc-FF-OH and (b) XRD patterns of perovskite films with different concentrations of Fmoc-FF-OH
图2 添加不同浓度nFmoc-FF-OH的钙钛矿薄膜的SEM照片及粒径分布直方图
Fig. 2 SEM images and particle size distributions of perovskite films with different Fmoc-FF-OH concentrations (a) 0 g·L-1; (b) 0.2 g·L-1; (c) 0.4 g·L-1; (d) 0.6 g·L-1; (e) 0.8 g·L-1
图3 未添加与添加0.6 g·L-1 Fmoc-FF-OH的钙钛矿薄膜的(a) Pb4f, (b )Br3d XPS窄扫谱图
Fig. 3 (a) Pb4f, (b) Br3d XPS spectra of perovskite films without and with addition of 0.6 g·L-1 Fmoc-FF-OH
图4 (a)添加不同浓度Fmoc-FF-OH的钙钛矿薄膜的PL谱图, (b)UV-Vis吸收谱图和(c)TRPL谱图
Fig. 4 (a) PL spectra, (b) UV-Vis spectra and (c) TRPL spectra of perovskite thin films with different concentrations of Fmoc-FF-OH; Colorful figures are available on website
图5 添加Fmoc-FF-OH对PSCs光伏性能的影响
Fig. 5 Effects of addition of Fmoc-FF-OH on the PSCs photovoltaic performance (a) J-V curves of PSCs with different concentrations of Fmoc-FF-OH; (b) Forward and reverse J-V curves for PSCs, (c) IPCE and integral current curves, (d) pure hole I-V curves under dark conditions and (e) electrochemical impedance spectra of PSCs without and with 0.6 g·L-1 Fmoc-FF-OH Colorful figures are available on website
Concentration (g·L-1) | Direction | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Hysteresis Index |
---|---|---|---|---|---|---|
0 | Reverse | 1.05 | 19.28 | 76.05 | 15.50 | 0.11 |
Forward | 1.02 | 17.53 | 74.76 | 13.39 | ||
0.2 | Reverse | 1.06 | 19.23 | 78.74 | 16.12 | — |
0.4 | Reverse | 1.06 | 19.37 | 78.37 | 16.24 | — |
0.6 | Reverse | 1.10 | 19.94 | 79.47 | 17.44 | 0.07 |
Forward | 1.09 | 19.03 | 77.36 | 16.10 | ||
0.8 | Reverse | 1.07 | 18.94 | 77.98 | 15.91 | — |
表1 添加不同浓度Fmoc-FF-OH的PSCs光伏参数
Table 1 Photovoltaic parameters of PSCs with different concentrations of Fmoc-FF-OH
Concentration (g·L-1) | Direction | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Hysteresis Index |
---|---|---|---|---|---|---|
0 | Reverse | 1.05 | 19.28 | 76.05 | 15.50 | 0.11 |
Forward | 1.02 | 17.53 | 74.76 | 13.39 | ||
0.2 | Reverse | 1.06 | 19.23 | 78.74 | 16.12 | — |
0.4 | Reverse | 1.06 | 19.37 | 78.37 | 16.24 | — |
0.6 | Reverse | 1.10 | 19.94 | 79.47 | 17.44 | 0.07 |
Forward | 1.09 | 19.03 | 77.36 | 16.10 | ||
0.8 | Reverse | 1.07 | 18.94 | 77.98 | 15.91 | — |
图6 (a)未添加与添加0.6 g·L-1 Fmoc-FF-OH的PSCs器件的PCE稳定性测试结果; (b)添加0.6 g·L-1 Fmoc-FF-OH的PSCs恒压电流曲线
Fig. 6 (a) PCE stability test for PSCs devices without and with 0.6 g·L-1 Fmoc-FF-OH; (b) Constant voltage current curves of PSCs with 0.6 g·L-1 Fmoc-FF-OH
图S2 (a)未添加和添加0.6 g·L-1 Fmoc-FF-OH的钙钛矿薄膜XPS总谱图和(b) I3d, (c) Cs3d XPS窄扫谱图
Fig. S2 (a)Total and (b) I3d, (c) Cs3d XPS spectra of perovskite thin films without and with addition of 0.6 g·L-1 Fmoc-FF-OH
Concentration (g·L-1) | A1 | τ1 /ns | A2 | τ2 /ns | τave /ns |
---|---|---|---|---|---|
0 | 12.03 | 4 | 87.97 | 125 | 124.47 |
0.2 | 11.12 | 7 | 88.88 | 133 | 132.17 |
0.4 | 5.04 | 10 | 94.98 | 231 | 230.49 |
0.6 | 0.12 | 6 | 99.88 | 332 | 331.99 |
0.8 | 3.79 | 8 | 96.21 | 226 | 225.67 |
表S1 添加不同浓度Fmoc-FF-OH的钙钛矿薄膜TRPL拟合参数
Table S1 TRPL fitting parameters of perovskite films with addition of different concentrations of Fmoc-FF-OH
Concentration (g·L-1) | A1 | τ1 /ns | A2 | τ2 /ns | τave /ns |
---|---|---|---|---|---|
0 | 12.03 | 4 | 87.97 | 125 | 124.47 |
0.2 | 11.12 | 7 | 88.88 | 133 | 132.17 |
0.4 | 5.04 | 10 | 94.98 | 231 | 230.49 |
0.6 | 0.12 | 6 | 99.88 | 332 | 331.99 |
0.8 | 3.79 | 8 | 96.21 | 226 | 225.67 |
[1] |
EONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381.
DOI |
[2] |
NIV A, ABRAMS Z R, GHARGHI M, et al. Overcoming the bandgap limitation on solar cell materials. Applied Physics Letters, 2012, 100(8): 083901.
DOI URL |
[3] |
YANG J, TANG W, YUAN R, et al. Defect mitigation using d-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12(6): 2050.
DOI URL |
[4] |
DU X, QIU R, ZOU T, et al. Enhanced uniformity and stability of Pb-Sn perovskite solar cells via Me4NBr passivation. Advanced Materials Interfaces, 2019, 6(14): 1900413.
DOI URL |
[5] |
SONG J, QIU Q, SUN X, et al. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell. Organic Electronics, 2022, 108: 106598.
DOI URL |
[6] |
WANG Y X, GAO P Y, FANG X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells. Journal of Inorganic Materials, 2021, 36(2): 168.
DOI URL |
[7] | SONG J, SU X, YAO Q, et al. High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative. Chinese Journal of Inorganic Chemistry, 2023, 39(2): 327. |
[8] | LU P, GAO C, SUN X, et al. Synthesis of Cs-rich CH(NH2)2)xCs1-xPbI3 perovskite films using additives with low sublimation temperature. Acta Physico-Chimica Sinica, 2021, 37(4): 2009036. |
[9] [1] |
WANG P, ZHAO J, LIU J, et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339: 51.
DOI URL |
[10] |
LI T, WANG S, YANG J, et al. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy, 2021, 82: 105742.
DOI URL |
[11] |
CAI Y, CUI J, CHEN M, et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Advanced Functional Materials, 2021, 31(7): 2005776.
DOI URL |
[12] |
LIU W, HU Z, WANG L, et al. Passiviation of L-3-(4-pyridyl)- alanine on interfacial defects of perovskite solar cell. Journal of Inorganic Materials, 2021, 36(6): 629.
DOI URL |
[13] |
SONG J, REN Y, GONG S, et al. Performance enhancement of crystal silicon solar cell by a CsPbBr3-Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film. Solar RRL, 2022, 6(11): 2200336.
DOI URL |
[14] |
ZHANG F J, HAN B N, ZENG H B. Perovskite quantum dot photovoltaic and luminescent concentrator cells: current status and challenges. Journal of Inorganic Materials, 2022, 37(2): 117.
DOI |
[15] |
WANG W Q, ZHENG H F, LU G H, et al. Recent progress on application of nano metal oxides in perovskite solar cells. Journal of Inorganic Materials, 2016, 31(9): 897.
DOI URL |
[16] |
Zhang Y H, Li Y. Interface materials for perovskite solar cells. Rare Metals, 2021, 40(11): 2993.
DOI |
[17] |
SONG J, ZHAO L, HUANG S, et al. A p-p(+) homojunction- enhanced hole transfer in inverted planar perovskite solar cells. ChemSusChem, 2021, 14(5): 1396.
DOI URL |
[18] |
CHEN Y, YANG Z, WANG S, et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Advanced Materials, 2018, 30(52): 1805660.
DOI URL |
[19] | CAI B, XING Y, YANG Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science, 2013, 6(5): 1480. |
[20] |
WU T, CUI D, LIU X, et al. Additive engineering toward high- performance tin perovskite solar cells. Solar RRL, 2021, 5(5): 2100034.
DOI URL |
[21] | HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Applied Materials & Interfaces, 2015, 7(31): 17330. |
[22] |
ZHANG M, WANG Z H, ZHENG X J, et al. Study on the influence mechanism of TiO2 morphology on the conversion efficiency of MAPbBr3 solar cells. Journal of Inorganic Materials, 2018, 33(2): 245.
DOI |
[23] |
ZHAO L, SUN X, YAO Q, et al. Field-effect control in hole transport layer composed of Li:NiO/NiO for highly efficient inverted planar perovskite solar cells. Advanced Materials Interfaces, 2022, 9(2): 2101562.
DOI URL |
[24] |
HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite- perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Advanced Materials, 2016, 28(25): 5121.
DOI URL |
[25] |
LIU C, YUAN S, ZZHANG H L, et al. Preparation of p-type CuI thin film by copper film iodization and its performance as a hole transport layer in reverse perovskite cells. Journal of Inorganic Materials, 2016, 31(4): 358.
DOI URL |
[26] |
CUI Q, ZHAO L, SUN X, et al. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer. Chinese Physics B, 2022, 31(3): 038801.
DOI |
[27] |
GUO X, NIU G, WANG L. Chemical stability issue and its research process of perovskite solar cells with high efficiency. Acta Chimica Sinica, 2015, 73(3): 211.
DOI |
[28] |
LI C, WANG Y, CHOY W C H. Efficient interconnection in perovskite tandem solar cells. Small Methods, 2020, 4(7): 2000093.
DOI URL |
[29] |
CHEN Y, CHEN T, DAI L. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells. Advanced Materials, 2015, 27(6): 1053.
DOI URL |
[30] |
WAFEE S, LIU B H, LEU C C. Lewis bases: promising additives for enhanced performance of perovskite solar cells. Materials Today Energy, 2021, 22: 100847.
DOI URL |
[31] |
ZUO L, GU Z, YE T, et al. Enhanced photovoltaic performance of CH3NH3Pbl3 perovskite solar cells through interfacial engineering using self-assembling monolayer. Journal of the American Chemical Society, 2015, 137(7): 2674.
DOI URL |
[32] |
RYU S, NOH J H, JEON N J, et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy and Environmental Sciences, 2014, 7(8): 2614.
DOI URL |
[33] |
JIAO B, LIU X, QUAN Z, et al. Performance of perovskite solar cells doped with L-arginine. Journal of Inorganic Materials, 2022, 37(6): 669.
DOI URL |
[1] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[2] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[3] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[4] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[5] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. |
[6] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[7] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[8] | 于守武, 赵泽文, 赵晋津, 肖淑娟, 师岩, 高存法, 苏晓, 胡宇翔, 赵智胜, 王婕, 王连洲. 新型光伏储电原位集成电池研究进展[J]. 无机材料学报, 2020, 35(6): 623-632. |
[9] | 熊浩, 张渤昕, 贾巍, 张青红, 谢华清. 高分子PVP添加剂对钙钛矿太阳电池稳定性的提升[J]. 无机材料学报, 2019, 34(1): 96-102. |
[10] | 刘 畅, 苑 帅, 张海良, 曹丙强, 吴莉莉, 尹龙卫. 铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能[J]. 无机材料学报, 2016, 31(4): 358-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||