[1] |
HUANG Z, BAI Y, HUANG X, et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(7987):531.
|
[2] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17):6050.
DOI
PMID
|
[3] |
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958):724.
|
[4] |
LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992):557.
|
[5] |
WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability. Adv. Funct. Mater., 2019, 29(47):1808843.
|
[6] |
HUI W, KANG X, WANG B, et al. Stable electron-transport-layer- free perovskite solar cells with over 22% power conversion efficiency. Nano Lett., 2023, 23(6): 2195.
|
[7] |
LIU Q, LIU Y, LIU H, et al. Magnetron sputtering Zn2SnO4 electron-transport layer for all room-temperature-processed perovskite solar cells. Sol. RRL, 2024, 8(4):2300926.
|
[8] |
KIMATA H, YAMAGUCHI S, GOTANDA T, et al. Open-circuit- voltage improvement mechanism of perovskite solar cells revealed by operando spin observation. ACS Appl. Mater. Interfaces, 2023, 15(50):58539.
|
[9] |
GOU Y, WANG H, LI Y, et al. Developing a gradient titanium dioxide/amorphous tantalum nitride electron transporting layer for efficient and stable perovskite solar cells. Inorg. Chem. Front., 2023, 10(22):6622.
|
[10] |
LIU J, YIN Y, HE B, et al. Focusing on the bottom contact: carbon quantum dots embedded SnO2 electron transport layer for high- performance and stable perovskite solar cells. Mat. Today Phys., 2023, 33: 101041.
|
[11] |
HU W, ZHOU W, LEI X, et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater., 2019, 31(8):1806095.
|
[12] |
JIANG Z, HE Z, MA S, et al. Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple- cation perovskite solar cells. J. Phys. Chem. C, 2023, 127(39):19432.
|
[13] |
HE J, DING T, WU W. Surface lattice perturbation of electron transport layer reducing oxygen vacancies for positive photovoltaic effect. Sol. RRL, 2022, 6(10):2200226.
|
[14] |
LI S, YANG Y, SU K, et al. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells. Chin. J. Chem. Eng., 2022, 50: 29.
|
[15] |
YOU S, ZENG H, KU Z, et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater., 2020, 32(43):2003990.
|
[16] |
LIN L, JONES T W, YANG T C J, et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater., 2021, 31(5):2008300.
|
[17] |
BU T, LI J, ZHENG F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun., 2018, 9(1):4609.
|
[18] |
LEE H B, JEON M K, KUMAR N, et al. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater., 2019, 29(32):1903213.
|
[19] |
MÉNDEZ P F, MUHAMMED S K M, BAREA E M, et al. Analysis of the UV-Ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis. Sol. RRL, 2019, 3(9):1900191.
|
[20] |
ZHOU J, ZHOU R, ZHU J, et al. Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells. Sol. RRL, 2021, 5(9):2100494.
|
[21] |
LIU H, CHEN Z, WANG H, et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A, 2019, 7(17):10636.
|
[22] |
SONG K K, ZOU X P, ZHANG H Y, et al. Effect of SnO2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells. Coatings, 2021, 11(5):591.
|
[23] |
CORREA BAENA J P, STEIER L, TRESS W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci., 2015, 8(10):2928.
|
[24] |
ANARAKI E H, KERMANPUR A, MAYER M T, et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett., 2018, 3(4):773.
|
[25] |
DING B, HUANG S Y, CHU Q Q, et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A, 2018, 6(22):10233.
|
[26] |
BU T, LIU X, ZHOU Y, et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 2017, 10(12):2509.
|
[27] |
WU C, FANG W, CHENG Q, et al. MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed., 2022, 61(43):e202210970.
|
[28] |
ZOU Y, EICHHORN J, RIEGER S, et al. Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy, 2023, 112: 108449.
|
[29] |
DOU J, ZHU C, WANG H, et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater., 2021, 33(39):2102947.
|