无机材料学报

• • 上一篇    下一篇

燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极

潘建隆, 马官军, 宋乐美, 郇宇, 魏涛   

  1. 济南大学 材料科学与工程学院, 济南 250022
  • 收稿日期:2024-01-11 修回日期:2024-03-08 出版日期:2024-03-30 网络出版日期:2024-03-30
  • 作者简介:潘建隆(1998-), 男, 硕士研究生. E-mail: pjl2812054@163.com.
  • 基金资助:
    国家自然科学基金(51972146, 52072150, 52372194); 山东省重点基础研究项目(ZR2022ZD39)

Fuel Reducing Method for in-situ Preparation of High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode

PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao   

  1. School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
  • Received:2024-01-11 Revised:2024-03-08 Published:2024-03-30 Online:2024-03-30
  • About author:PAN Jianlong(1998-), male, Master candidate. E-mail: pjl2812054@163.com
  • Supported by:
    National Natural Science Foundation of China (51972146, 52072150, 52372194); Shandong Province Key Fundamental

摘要: 受固体氧化物燃料电池(SOFCs)原位还原脱溶纳米金属阳极技术的启发,本工作提出煅烧后的Sr2V0.1Co0.9MoO6前驱体(包含其他相的钙钛矿)在空气气氛下与电解质共烧制备出单电池,避免了为防止阳极氧化而需在还原/惰性气氛下制备电池的苛刻条件。制备电解质片上的阳极前驱体仅需在燃料侧原位还原4 h,便可形成纯相Sr2V0.1Co0.9MoO6 (R-SVCMO)阳极。结果表明,R-SVCMO在活化能显著降低的同时电导率由2.7提高至21.6 S•cm-1。当R-SVCMO为阳极的单电池分别以H2和湿CH4为燃料气时,在850 ℃ 的最大功率密度(Pmax)分别达到862和514 mW•cm-2,显示出优秀的催化性能。还原前后阳极在100~850 ℃的平均热膨胀系数(TEC)分别为1.15×10-5和1.23×10-5 K-1,均与传统SOFC电解质相近。因此,还原过程不会导致阳极层产生体积变化,可以显著提高电池结构稳定性(退化率仅为0.13%)。加之R-SVCMO是在燃料气氛下合成的,作为阳极表现出极高的长期稳定性和催化活性。R-SVCMO对湿CH4的催化效率达到60%,并稳定运行1450 h,相应的单电池可在0.7 V稳定运行450 h。综上所述,本研究采用原位燃料还原法制备了具有优异电化学性能和结构稳定性的单体电池。

关键词: 固体氧化物燃料电池, 燃料还原制备技术, 高稳定性阳极, 甲烷燃料

Abstract: Taking inspiration from the in-situ reduction technique employed for exsolved nano-metal as anodes in solid oxide fuel cells (SOFCs), this study utilized Sr2V0.1Co0.9MoO6, which was synthesized in an ambient air environment and contains perovskites of other phases, to co-fire with the electrolyte under atmospheric conditions for direct fabrication of a single cell. By adopting this approach, the need for subjecting the cell to harsh preparative conditions in a reducing/inert atmosphere to prevent anodic oxidation can be circumvented. Following the preparation of the anode precursor on the electrolyte sheet, a simple process of in-situ reduction at 750 ℃ for 4 h on the fuel side is required to achieve formation of a pure phase Sr2V0.1Co0.9MoO6 (R-SVCMO) anode. The results demonstrates a significant reduction in the activation energy of R-SVCMO, accompanied by an increase in conductivity from 2.7 S•cm-1 to 21.6 S•cm-1. Moreover, when employing R-SVCMO as the anode in a single cell with H2 and wet CH4 as fuel gases, the maximum power density (Pmax) can reach up to 862 mW·cm-2 and 514 mW·cm-2 at 850 ℃, showcasing exceptional catalytic performance. Moreover, the anodes before and after reduction exhibit average thermal expansion coefficient (TEC) of 1.15×10-5 and 1.2×10-5 K-1 within the temperature range of 100-850 ℃, comparable to those observed in conventional SOFC electrolytes. Therefore, the reduction process does not induce any volumetric changes in the anode layer, significantly enhancing the structural stability of the cell. Additionally, a minimal degradation rate of only 0.13% is achieved. Moreover, the synthesis of R-SVCMO under a fuel atmosphere results in remarkable long-term stability and catalytic activity as an anode material. Notably, R-SVCMO exhibited a 60% catalytic efficiency for wet CH4, demonstrating stable operation for 1450 h, while the corresponding single cell also maintained stability for 450 h at 0.7 V. In summary, this study employed an in-situ fuel reduction method to prepare a single cell with exceptional electrochemical performance and structural stability.

Key words: solid oxide fuel cell, fuel reducing method, high stable anode, methane fuel

中图分类号: