无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1197-1204.DOI: 10.15541/jim20240138 CSTR: 32189.14.10.15541/jim20240138
所属专题: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
收稿日期:
2024-03-21
修回日期:
2024-06-17
出版日期:
2024-11-20
网络出版日期:
2024-07-03
通讯作者:
吴聪聪, 教授. E-mail: ccwu@hubu.edu.cn;作者简介:
周泽铸(1995-), 男, 博士研究生. E-mail: zhouzezhu@stu.hubu.edu.cn
基金资助:
ZHOU Zezhu1(), LIANG Zihui1,2, LI Jing1(
), WU Congcong1(
)
Received:
2024-03-21
Revised:
2024-06-17
Published:
2024-11-20
Online:
2024-07-03
Contact:
WU Congcong, professor. E-mail: ccwu@hubu.edu.cn;About author:
ZHOU Zezhu (1995-), male, PhD candidate. E-mail: zhouzezhu@stu.hubu.edu.cn
Supported by:
摘要:
制备大面积、高效率的钙钛矿太阳能电池模组(PSM)是钙钛矿太阳能电池(PSCs)产业化的关键步骤。使用挥发性溶剂的钙钛矿前驱体溶液在形成液膜后, 溶剂可以迅速自行蒸发, 无需添加反溶剂、退火等后处理过程, 极大简化了工艺流程, 更加适合工业化生产。然而, 挥发性溶剂体系制备的钙钛矿薄膜结晶速率过快, 生成的钙钛矿晶粒尺寸偏小, 且薄膜的缺陷态密度较高, 这造成制备的器件效率和稳定性较差。本研究设计了一种由甲胺/乙腈(MA/ACN)组成的挥发性溶剂体系, 制备了MAPbI3钙钛矿太阳能电池/模组, 并在钙钛矿前驱体溶液中添加了适量的PbCl2, 用于延缓结晶并钝化晶界缺陷。使用这种方法制备的0.06 cm2小面积器件的光电转换效率(PCE)最高达到21.21%, 并且稳定性较好, 基于此工艺制备的钙钛矿太阳能电池模组的PCE达到18.89%。本研究为钙钛矿太阳能电池的大规模工业化生产提供了一种新的思路。
中图分类号:
周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204.
ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents[J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204.
图1 PVK-0PbCl2和PVK-5PbCl2的表面形貌及物相结构
Fig. 1 Surface morphologies and phase structures of PVK-0PbCl2 and PVK-5PbCl2 (a, b) SEM images of PVK-0PbCl2 and PVK-5PbCl2; (c) EDS mappings of PVK-5PbCl2; (d) Histogram of particle size distribution; (e) XRD patterns of PVK-0PbCl2 and PVK-5PbCl2; (f) UV-Vis absorption spectra of PVK-0PbCl2 and PVK-5PbCl2 Colorful figures are available on website
图2 PVK-0PbCl2和PVK-5PbCl2的光伏性能
Fig. 2 Photovoltaic properties of PVK-0PbCl2 and PVK-5PbCl2 (a) PL spectra; (b) TRPL spectra; (c) SCLC curves; (d) Dark state J-V curves; (e) Conductivity; (f) Nyquist plots Colorful figures are available on website
图3 添加不同PbCl2含量PSCs的光伏性能
Fig. 3 Photovoltaic performance of PSCs with different PbCl2 additions (a) Schematic diagram and cross-sectional SEM image of PSC; (b1-b4) Photovoltaic parameters of PSCs with different PbCl2 additions; (c) Forward and reverse sweep J-V curves of PSC-0PbCl2 and PSC-5PbCl2; (d) EQE spectra of PSC-5PbCl2; (e) SPO curves of PSC-5PbCl2; (f) Stability tests of PSC-0PbCl2 and PSC-5PbCl2
图4 5 cm×5 cm PSM的光伏性能及大面积钙钛矿薄膜的均匀性
Fig. 4 Photovoltaic performance of 5 cm×5 cm PSM and uniformity of large-area perovskite film (a) Structure diagram and physical images; (b) I-V and P-V curves of the PSM with champion efficiency; (c) SPO curve; (d) UV-Vis absorption spectra and (e) XRD patterns of different sub-films; (f) PL intensity distribution mapping. Colorful figures are available on website
图S3 5 cm×5 cm钙钛矿薄膜不同位置的表面、截面SEM照片及粒径统计
Fig. S3 Surface and cross-sectional SEM images, and crystallite size distribution histogram for different positions on a 5 cm×5 cm thin film
Sample | PCE/% | FF/% | VOC/V | JSC/(mA·cm-2) | |
---|---|---|---|---|---|
PSC-0PbCl2 | Average | 18.26 | 74.26 | 1.04 | 23.48 |
Champion | 19.31 | 77.40 | 1.02 | 24.35 | |
PSC-2.5PbCl2 | Average | 19.11 | 75.87 | 1.07 | 23.65 |
Champion | 20.17 | 76.70 | 1.08 | 24.03 | |
PSC-5PbCl2 | Average | 20.35 | 77.72 | 1.08 | 24.20 |
Champion | 21.21 | 79.70 | 1.08 | 24.72 | |
PSC-7.5PbCl2 | Average | 19.23 | 76.25 | 1.07 | 23.61 |
Champion | 20.37 | 78.10 | 1.08 | 24.21 |
表S1 添加不同PbCl2含量PSCs的光伏性能参数
Table S1 Photovoltaic parameters of PSCs with different PbCl2 additions
Sample | PCE/% | FF/% | VOC/V | JSC/(mA·cm-2) | |
---|---|---|---|---|---|
PSC-0PbCl2 | Average | 18.26 | 74.26 | 1.04 | 23.48 |
Champion | 19.31 | 77.40 | 1.02 | 24.35 | |
PSC-2.5PbCl2 | Average | 19.11 | 75.87 | 1.07 | 23.65 |
Champion | 20.17 | 76.70 | 1.08 | 24.03 | |
PSC-5PbCl2 | Average | 20.35 | 77.72 | 1.08 | 24.20 |
Champion | 21.21 | 79.70 | 1.08 | 24.72 | |
PSC-7.5PbCl2 | Average | 19.23 | 76.25 | 1.07 | 23.61 |
Champion | 20.37 | 78.10 | 1.08 | 24.21 |
Sample | EQEEL/% | ∆VOC/V* |
---|---|---|
PSC-0PbCl2 | 1.03×10-4 | 0.268 |
PSC-5PbCl2 | 2.02×10-5 | 0.226 |
表S2 PSC-0PbCl2与PSC-5PbCl2的VOC损失分析
Table S2 VOC loss analysis of PSC-0PbCl2 and PSC-5PbCl2
Sample | EQEEL/% | ∆VOC/V* |
---|---|---|
PSC-0PbCl2 | 1.03×10-4 | 0.268 |
PSC-5PbCl2 | 2.02×10-5 | 0.226 |
Ref. | Year | PCEPSC/% | PCEPSM/% |
---|---|---|---|
[S1] | 2015 | 15.1 | - |
[S2] | 2017 | 19.0 | - |
[S3] | 2017 | 15.9 | - |
[S4] | 2018 | 16.32 | - |
[S5] | 2019 | 17.82 | - |
[S6] | 2019 | 18.4 | - |
[S7] | 2020 | 23.1 | - |
[S8] | 2020 | 20.78 | - |
[S9] | 2021 | 19.67 | - |
[S10] | 2022 | 19.6 | - |
[S11] | 2022 | 19.14 | 17.12 (15 cm2) |
[S12] | 2023 | 21.04 | 19.03 (70 cm2) |
This work | 2024 | 21.21 | 18.89 (14.88 cm2) |
表S3 本研究与其他MA/ACN溶剂体系PSCs/PSM研究的效率对比
Table S3 Comparison of the reported photovoltaic performance of MA/ACN solvent system PSCs/PSM
Ref. | Year | PCEPSC/% | PCEPSM/% |
---|---|---|---|
[S1] | 2015 | 15.1 | - |
[S2] | 2017 | 19.0 | - |
[S3] | 2017 | 15.9 | - |
[S4] | 2018 | 16.32 | - |
[S5] | 2019 | 17.82 | - |
[S6] | 2019 | 18.4 | - |
[S7] | 2020 | 23.1 | - |
[S8] | 2020 | 20.78 | - |
[S9] | 2021 | 19.67 | - |
[S10] | 2022 | 19.6 | - |
[S11] | 2022 | 19.14 | 17.12 (15 cm2) |
[S12] | 2023 | 21.04 | 19.03 (70 cm2) |
This work | 2024 | 21.21 | 18.89 (14.88 cm2) |
[1] |
AKIHIRO K, KENJIRO T, YASUO S, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.
DOI PMID |
[3] | KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302. |
[4] | National Renewable Energy Laboratory. Best research-cell efficiency chart. [2024-04-04]. https://www.nrel.gov/pv/cell-efficiency.html. |
[5] | YANG Y, LIU C, DING Y, et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nature Energy, 2024, 9(3): 316. |
[6] | LI M, ZHU Z, WANG Z, et al. High-quality hybrid perovskite thin films by post-treatment technologies in photovoltaic applications. Advanced Materials, 2023, 36(7): 2309428. |
[7] | HUI Z, XU Z, ZHU C, et al. Progress on Large-area organic- inorganic hybrid perovskite films and its photovoltaic application. Journal of Inorganic Materials, 2024, 39(5): 457. |
[8] | LI D, ZHANG D, LIM K S, et al. A review on scaling up perovskite solar cells. Advanced Functional Materials, 2021, 31(12): 2008621. |
[9] | CHEN C, GAO J, FENG S P. The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent. International Materials Reviews 2023, 68(3): 301. |
[10] |
TAYLOR A D, SUN Q, GOETZ K P, et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 2021, 12: 1878.
DOI PMID |
[11] | CHOI H, CHOI K, CHOI Y, et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods, 2019, 4(5): 1900569. |
[12] | NG A, REN Z, HU H, et al. A Cryogenic process for antisolvent- free high-performance perovskite solar cells. Advanced Materials, 2018, 30(44): 1804402. |
[13] | CASSELLA E J, SPOONER E L K, SMITH J A, et al. Binary solvent system used to fabricate fully annealing-free perovskite solar cells. Advanced Energy Materials, 2023, 13(11): 2203468. |
[14] | LIANG Z, SHI Y, YUAN T, et al. Distinct reaction route toward high photovoltaic performance: perovskite salts versus crystals. ACS Applied Energy Materials, 2023, 6(4): 2247. |
[15] | WU C, WANG K, LI J, et al. Volatile solution: the way toward scalable fabrication of perovskite solar cells? Matter, 2021, 4(3): 775. |
[16] | WU C, WANG K, YAN Y, et al. Fullerene polymer complex inducing dipole electric field for stable perovskite solar cells. Advanced Functional Materials, 2019, 29(12): 1804419. |
[17] |
CHEN Q, ZHOU H, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, 2014, 14(7): 4158.
DOI PMID |
[18] | CHEN Y, MENG Q, XIAO Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Applied Materials & Interfaces, 2019, 11(47): 44101. |
[19] | GAO B, HU J, ZUO Z, et al. Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells. ACS Applied Materials & Interfaces, 2022, 14(35): 40062. |
[20] | GAO Y, LIU C, XIE Y, et al. Can nanosecond laser achieve high- performance perovskite solar modules with aperture area efficiency over 21%? Advanced Energy Materials, 2022, 12(41): 2202287. |
[21] | XIE Y, DUAN J, PENG L, et al. Understanding the mechanism of PbCl2 Additive for MAPbI3-based perovskite solar cells. Advanced Photonics Research, 2021, 2(8): 2100012 |
[22] | LING X, GUO J, SHEN C, et al. High-throughput deposition of recyclable SnO2 electrodes toward efficient perovskite solar cells. Small, 2023, 20(18): 2308579. |
[23] | JIN B, MING Y, WU Z, et al. Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 2022, 94: 106936. |
[24] | ZHAO J J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2021, 41(1): 96. |
[25] | DAI X, ZHANG L, QIAN Y, et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering. Journal of Inorganic Materials, 2023, 38(9): 1089. |
[26] | CHENG J, CHOI I, KIM W, et al. Wide-band-gap (2.0 eV) perovskite solar cells with a VOC of 1.325 V fabricated by a green- solvent strategy. ACS Applied Materials & Interfaces, 2023, 15(19): 23077. |
[27] | JIANG X, ZHANG B, YANG G, et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, 2023, 62(22): e202302462. |
[28] |
LI C, WANG X, BI E, et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 2023, 379(6633): 690.
DOI PMID |
[29] | CHEN S, YU X, CAI X, et al. PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells. RSC Advances, 2016, 6(1): 648. |
[30] | WANG P, ZHAO J, LIU J, et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339: 51. |
[31] |
DING T, FENG P, SUN X, et al. Perovskite film passivated by Fmoc-FF-OH and its photovoltaic performance. Journal of Inorganic Materials, 2023, 38(9): 1076.
DOI |
[32] | GALATOPOULOS F, SAVVA A, PAPADAS I T, et al. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 2017, 5(7): 076102. |
[33] | HAILEGNAW B, SARICIFTCI N S, SCHARBER M C. Impedance spectroscopy of perovskite solar cells: studying the dynamics of charge carriers before and after continuous operation. Physica Status Solidi (A) - Applications and Materials Science, 2020, 217(22): 2000291. |
[1] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[5] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[6] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[7] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[8] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[9] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[10] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[11] | 马婷婷, 汪志鹏, 张梅, 郭敏. 超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究[J]. 无机材料学报, 2023, 38(12): 1387-1395. |
[12] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. |
[13] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[14] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[15] | 于守武, 赵泽文, 赵晋津, 肖淑娟, 师岩, 高存法, 苏晓, 胡宇翔, 赵智胜, 王婕, 王连洲. 新型光伏储电原位集成电池研究进展[J]. 无机材料学报, 2020, 35(6): 623-632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||