无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1031-1043.DOI: 10.15541/jim20230116
所属专题: 【能源环境】钙钛矿(202310); 【能源环境】太阳能电池(202310)
收稿日期:
2023-03-07
修回日期:
2023-05-25
出版日期:
2023-09-20
网络出版日期:
2023-06-16
通讯作者:
谭占鳌, 教授. E-mail: tanzhanao@mail.buct.edu.cn作者简介:
董怡曼(1996-), 女, 博士研究生. E-mail: dongyiman1012@126.com
基金资助:
Received:
2023-03-07
Revised:
2023-05-25
Published:
2023-09-20
Online:
2023-06-16
Contact:
TAN Zhan’ao, professor. E-mail: tanzhanao@mail.buct.edu.cnAbout author:
DONG Yiman (1996-), female, PhD candidate. E-mail: dongyiman1012@126.com
Supported by:
摘要:
单结太阳电池的能量转换效率从根本上受限于Shockley-Queisser(S-Q)理论极限, 二端叠层结构可同时解决单结器件中面临的光谱失配和热弛豫能量损耗问题, 是突破S-Q极限最有前途的实用技术。二端叠层太阳电池中的复合层作为中间层的重要组分, 为来自两侧的电子和空穴提供复合位点, 避免了电荷堆积造成的开路电压损失并促进了电流流通, 是实现高性能叠层器件的关键因素之一。理想的复合层应具有较高电导率以提高电荷复合速率、高光学透过率以保证后结子电池的有效光吸收、良好的化学稳定性以降低溶剂对子电池的溶解伤害以及较低的制备成本以推动叠层电池的商业化生产进程。目前已有多种材料被应用于二端叠层太阳电池中, 如薄金属、透明导电氧化物、导电聚合物、氧化石墨烯等, 在钙钛矿-钙钛矿、钙钛矿-有机、钙钛矿-晶硅叠层器件中发挥了重要作用。本文归纳了不同类型叠层太阳电池复合层的研究进展, 系统介绍了复合层的种类、设计原则、制备工艺等, 对比其优缺点并提出了复合层目前存在的问题和面临的挑战, 为制备高效叠层电池提供了有益参考。
中图分类号:
董怡曼, 谭占鳌. 宽带隙钙钛矿基二端叠层太阳电池复合层的研究进展[J]. 无机材料学报, 2023, 38(9): 1031-1043.
DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite[J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043.
图2 基于薄金属RL的2T叠层太阳电池结构及性能
Fig. 2 Structures and device performance of 2T tandem solar cells based on thin metal RLs (a) Device structure and cross-section SEM image of perovskite-organic 2T tandem solar cell with Ag as the RL[12]; (b) Device structure of perovskite-organic 2T tandem solar cell with Ag nanoparticles as RL and the corresponding simulation result of the light field distribution[30]; (c) Device structure of perovskite-perovskite 2T tandem solar cell with Au as RL(left), J-V curves of devices without and with ultrathin Au layer as RL(middle), and J-V curves of a large-area device (1.05 cm2) with inset showing the digital photo of the large-area device (right)[32] BCP: Bathocuproine
图3 ITO纳米晶的光电特性及相应的2T叠层太阳电池制备示意图
Fig. 3 Photoelectric properties of ITO nanocrystals and schematic diagram of preparation process of corresponding 2T tandem solar cell (a) X-ray diffraction pattern of ITO nanocrystals[37]; (b) Dark J-V curves of devices based on ICLs without RL, with Au as RL, and with ITO as RL[37]; (c) Optical absorptance curves of ICLs without RL, with Au and ITO as RL[37]; (d) Schematic diagram of preparation process of the perovskite-silicon tandem solar cell[39]. E-NiOx: NiOx nanocrystals which are dispersible in ethanol; AR: Anti-reflection film; SHJ: Silicon heterojunction. Colorful figures are available on website
图4 IZO为RL的2T叠层太阳电池及表征[40]
Fig. 4 IZO as RL in 2T tandem solar cells and the corresponding characterization[40] (a) Schematic diagram showing the p-i-n structured perovskite-organic 2T tandem solar cells (The dashed grey frame indicates the ICL region and the design of ICLs with four types of RL are depicted in the frame); (b) J-V curves (reverse scan) of devices using IZO-based ICLs with different thicknesses; Transmission electron microscopy image of the (c) 4 nm-thickness IZO and (d) 1 nm-thickness Ag on BCP. CRL: Carrier recombination layer; OPV: Organic photovoltaic. Colorful figures are available on website
图5 ICL简化前后的钙钛矿-钙钛矿2T叠层太阳电池及性能[44]
Fig. 5 Perovskite-perovskite 2T tandem solar cell and corresponding device performance before and after the simplification of ICL[44] (a) Schematic diagrams of 2T tandem solar cells based on typical structured ICLs of C60/SnO2−x/ITO/PEDOT:PSS (left) and the simplified ICLs of C60/SnO2−x (right); (b) J-V curves of devices based on various ICLs. NBG: Narrow bandgap; WBG: Wide bandgap. Colorful figures are available on website
图6 基于InOx RL的2T叠层太阳电池及其光电性能
Fig. 6 InOx RL-based 2T tandem solar cells and their photoelectric properties (a) Schematic of perovskite-organic 2T tandem solar cell with InOx or Ag as RL[45]; (b) J-V characteristics of tandem solar cells with varied thickness (number of ALD cycles) of InOx layers[45]; (c) Optical transmittance of InOx, SnOx/InOx/MoOx, and SnOx/1 nm Ag/MoOx[45]; (d) Resulting External Quantum Efficiency (EQE) spectra of the organic rear subcell of tandem solar cells with InOx or Ag as RL[45]. Colorful figures are available on website
图7 以PEDOT:PSS或GO为RL的2T叠层太阳电池
Fig. 7 2T tandem solar cells with PEDOT:PSS or GO as RL (a) Schematic of the as-prepared 2T bottom-up perovskite-perovskite tandem solar cell and chemical structures of spiro-OMeTAD, PEDOT:PSS, PEI and PCBM[47]; (b) Schematic diagram and long-term photo-stability for the perovskite-perovskite tandem solar cell[24]
Front subcell | ICL | Rear subcell | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CsPbI2Br | MoO3/Ag/PFN-Br | PTB7-Th:IEICO-4F | 1.82 | 13.20 | 71.68 | 17.24 | [ | ||||
FA0.8MA0.02Cs0.18Pb1.8Br1.2 | C60/BCP/Ag/MoOx | PBDBT-2F:Y6:PC71BM | 1.90 | 13.05 | 83.1 | 20.6 | [ | ||||
CsPbI2.1Br0.9 | MoO3/Ag/ZnO | PM6:Y6 | 1.89 | 12.77 | 74.81 | 18.06 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6-BO | 1.96 | 13.30 | 80.8 | 21.1 | [ | ||||
FA0.6MA0.4Pb(I0.6Br0.4)3 | C60/BCP/Ag/MoOx | PTB7-Th: BTPV-4Cl-eC9 | 1.88 | 15.70 | 74.6 | 15.84 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6 | 2.10 | 13.09 | 75.1 | 20.6 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | D18:Y6 | 2.22 | 12.68 | 76.0 | 21.4 | [ | ||||
FA0.8Cs0.2Pb(I0.7Br0.3)3 | C60/BCP/Ag/MoOx/ITO/ PEDOT:PSS | (FASnI3)0.6(MAPbI3)0.4:Cl | 1.92 | 14.00 | 78.1 | 21.0 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 1.97 | 15.6 | 81.0 | 24.8 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.01 | 16.0 | 79.8 | 25.6 | [ | ||||
MA0.96FA0.1PbI2Br(SCN)0.12 | PCBM/BCP/Au/MoO3 | PM6:CH1007 | 1.96 | 13.8 | 78.4 | 21.2 | [ | ||||
1.77 eV perovskite | C60/ALD SnOx/Au/PEDOT:PSS | 1.23 eV Perovskite | 1.95 | 15.8 | 75 | 23.1 | [ | ||||
Wide Eg perovskite | PCBM/BCP/Au/MoO3 | PM6:Y6 | 1.94 | 13.12 | 78.7 | 20.03 | [ | ||||
FA0.8Cs0.2PbI1.95Br1.05 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.00 | 15.8 | 78.3 | 24.7 | [ | ||||
FA0.7Cs0.3PbI2.1Br0.9 | LiF/C60/SnO2/Au/PEDOT: PSS | (FASnI3)0.6(MAPbI3)0.4 | 2.12 | 15.03 | 80.1 | 25.5 | [ | ||||
FA0.8Cs0.2Pb(I0.62Br0.38)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.03 | 16.5 | 79.9 | 26.7 | [ | ||||
FA0.8Cs0.2PbI1.8Br1.2 | C60/ALD SnO2/Au/PEDOT:PSS | PM6:Y6 | 2.07 | 13.92 | 77.29 | 22.29 | [ | ||||
1.75 eV perovskite | LiF/C60/ALD SnOx/Au/PEDOT:PSS | FA0.6MA0.4Sn0.6Pb0.4I3 | 2.20 | 15.1 | 81.6 | 27.2 | [ | ||||
Cs0.2FA0.8Pb(I0.6Br0.4)3 | C60/ALD SnOx/Au/PEDOT:PSS | Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3 | 2.19 | 15.05 | 83.1 | 27.4 | [ | ||||
FA0.8Cs0.2PbI2.1Br0.9 | LiF/C60/ALD SnO2/Au | FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3 | 1.94 | 12.9 | 85.8 | 21.5 | [ | ||||
CsPbI2.2Br0.8 | MoO3/Au/ZnO | PM6:CH1007 | 2.10 | 13.90 | 76.86 | 22.43 | [ | ||||
FA0.83Cs0.17Pb(I0.5Br0.5)3 | SnO2/ZTO/ITO/PEDOT:PSS | FA0.75Cs0.25Sn0.5Pb0.5I3 | 1.66 | 14.5 | 70 | 16.9 | [ | ||||
MA0.9Cs0.1Pb(I0.6Br0.4)3 | C60/Bis-C60/ITO/PEDOT: PSS | MAPb0.5Sn0.5I3 | 1.98 | 12.7 | 73 | 18.5 | [ | ||||
Wide Eg perovskite | nc-SiOx:H/ITO/PTAA | Silicon | 1.76 | 18.5 | 78.5 | 25.5 | [ | ||||
Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.80 | 17.8 | 79.4 | 25.4 | [ | ||||
Cs0.1MA0.9Pb(I0.9Br0.1)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.82 | 19.2 | 75.3 | 26.2 | [ | ||||
FA0.8Cs0.2 Pb(I0.6Br0.4)3 | C60/ITO NCs/E-NiOx | FA0.8Cs0.2Pb0.5Sn0.5I3 | 1.90 | 15.4 | 80.4 | 23.5 | [ | ||||
Cs0.2FA0.8PbI1.8Br1.2 | C60/ALD SnO2/ITO NCs | FAPb0.5Sn0.5I3 | 2.03 | 16.2 | 80.3 | 26.3 | [ | ||||
Cs0.1(MA0.17FA0.83)0.9Pb (I0.83Br0.17)3 | a-Si:H(n)/ITO/NiOx | Silicon | 1.75 | 15.5 | 73.6 | 20.0 | [ | ||||
Wide Eg perovskite | nc-SiOx(n)/ITO/NiOx/2- PACz | Silicon | 1.79 | 20.11 | 79.95 | 28.84 | [ | ||||
Wide Eg perovskite | a-Si:H(n)/ITO/NiOx | Silicon | 1.82 | 16.31 | 78.32 | 23.31 | [ | ||||
Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 | nc-SiOx:H(n)/ITO | Silicon | 1.90 | 19.54 | 80.90 | 29.83 | [ | ||||
Wide Eg perovskite | a-Si:H(i/n)/ITO/NiO | Silicon | 1.85 | 19.8 | 78.9 | 28.9 | [ | ||||
MAPbI3 | p-aSi/IZO/PCBM | Silicon | 1.69 | 15.8 | 79.9 | 21.4 | [ | ||||
1.79 eV perovskite | C60/BCP/IZO/MoOx | PM6:Y6:PC71BM | 2.06 | 14.83 | 77.2 | 23.6 | [ | ||||
FA0.78Cs0.22Pb(I0.85Br0.15)3 | Passivated ETL/IZO/SAM | Silicon | 1.91 | 19.29 | 78.3 | 28.81 | [ | ||||
Cs0.05MA0.14FA0.81Pb(I0.8Br0.2)3 | N doped nc-Si/IZO/2-PACz | Silicon | 1.85 | 19.7 | 77.9 | 28.4 | [ | ||||
Wide Eg Perovskite | Poly-Si(n+)IZO | TOPCon | 1.80 | 19.4 | 81.64 | 28.49 | [ | ||||
Cs0.4FA0.6PbI1.95Br1.05 | (n+)C60/SnO1.76 | Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 | 2.03 | 15.2 | 79.7 | 24.6 | [ | ||||
FA0.8Cs0.2Pb(I0.5Br0.5)3 | SiOx/InOx/MoOx | PM6:Y6:PC61BM | 2.15 | 14.0 | 80 | 24.0 | [ | ||||
MAPbI3 | Spiro-OMeTAD/PEDOT: PSS/PEI | MAPbI3 | 1.89 | 6.61 | 56 | 7.0 | [ | ||||
PBSeDTEG8:PC61BM | TiO2/PEDOT:PSS-PH500/ PEDOT:PSS 4083 | MAPbI3 | 1.52 | 10.05 | 67 | 10.23 | [ | ||||
MAPbBr3 | Spiro-OMeTAD/PEDOT: PSS/C60 | MAPbI3 | 1.96 | 6.40 | 41 | 5.1 | [ | ||||
Cs0.4FA0.6PbI2Br | C60/SnO2/Graphene oxide/PEDOT:PSS | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.02 | 15.8 | 79.3 | 25.3 | [ | ||||
Cs0.4FA0.6PbI2.16Br0.84 | C60/SnO2-x/Graphene oxide/SnOCl | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.05 | 16.2 | 79.3 | 26.3 | [ |
表1 各种2T叠层电池结构及性能汇总
Table 1 Summary of structure and performance of 2T tandem solar cells
Front subcell | ICL | Rear subcell | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CsPbI2Br | MoO3/Ag/PFN-Br | PTB7-Th:IEICO-4F | 1.82 | 13.20 | 71.68 | 17.24 | [ | ||||
FA0.8MA0.02Cs0.18Pb1.8Br1.2 | C60/BCP/Ag/MoOx | PBDBT-2F:Y6:PC71BM | 1.90 | 13.05 | 83.1 | 20.6 | [ | ||||
CsPbI2.1Br0.9 | MoO3/Ag/ZnO | PM6:Y6 | 1.89 | 12.77 | 74.81 | 18.06 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6-BO | 1.96 | 13.30 | 80.8 | 21.1 | [ | ||||
FA0.6MA0.4Pb(I0.6Br0.4)3 | C60/BCP/Ag/MoOx | PTB7-Th: BTPV-4Cl-eC9 | 1.88 | 15.70 | 74.6 | 15.84 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6 | 2.10 | 13.09 | 75.1 | 20.6 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | D18:Y6 | 2.22 | 12.68 | 76.0 | 21.4 | [ | ||||
FA0.8Cs0.2Pb(I0.7Br0.3)3 | C60/BCP/Ag/MoOx/ITO/ PEDOT:PSS | (FASnI3)0.6(MAPbI3)0.4:Cl | 1.92 | 14.00 | 78.1 | 21.0 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 1.97 | 15.6 | 81.0 | 24.8 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.01 | 16.0 | 79.8 | 25.6 | [ | ||||
MA0.96FA0.1PbI2Br(SCN)0.12 | PCBM/BCP/Au/MoO3 | PM6:CH1007 | 1.96 | 13.8 | 78.4 | 21.2 | [ | ||||
1.77 eV perovskite | C60/ALD SnOx/Au/PEDOT:PSS | 1.23 eV Perovskite | 1.95 | 15.8 | 75 | 23.1 | [ | ||||
Wide Eg perovskite | PCBM/BCP/Au/MoO3 | PM6:Y6 | 1.94 | 13.12 | 78.7 | 20.03 | [ | ||||
FA0.8Cs0.2PbI1.95Br1.05 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.00 | 15.8 | 78.3 | 24.7 | [ | ||||
FA0.7Cs0.3PbI2.1Br0.9 | LiF/C60/SnO2/Au/PEDOT: PSS | (FASnI3)0.6(MAPbI3)0.4 | 2.12 | 15.03 | 80.1 | 25.5 | [ | ||||
FA0.8Cs0.2Pb(I0.62Br0.38)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.03 | 16.5 | 79.9 | 26.7 | [ | ||||
FA0.8Cs0.2PbI1.8Br1.2 | C60/ALD SnO2/Au/PEDOT:PSS | PM6:Y6 | 2.07 | 13.92 | 77.29 | 22.29 | [ | ||||
1.75 eV perovskite | LiF/C60/ALD SnOx/Au/PEDOT:PSS | FA0.6MA0.4Sn0.6Pb0.4I3 | 2.20 | 15.1 | 81.6 | 27.2 | [ | ||||
Cs0.2FA0.8Pb(I0.6Br0.4)3 | C60/ALD SnOx/Au/PEDOT:PSS | Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3 | 2.19 | 15.05 | 83.1 | 27.4 | [ | ||||
FA0.8Cs0.2PbI2.1Br0.9 | LiF/C60/ALD SnO2/Au | FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3 | 1.94 | 12.9 | 85.8 | 21.5 | [ | ||||
CsPbI2.2Br0.8 | MoO3/Au/ZnO | PM6:CH1007 | 2.10 | 13.90 | 76.86 | 22.43 | [ | ||||
FA0.83Cs0.17Pb(I0.5Br0.5)3 | SnO2/ZTO/ITO/PEDOT:PSS | FA0.75Cs0.25Sn0.5Pb0.5I3 | 1.66 | 14.5 | 70 | 16.9 | [ | ||||
MA0.9Cs0.1Pb(I0.6Br0.4)3 | C60/Bis-C60/ITO/PEDOT: PSS | MAPb0.5Sn0.5I3 | 1.98 | 12.7 | 73 | 18.5 | [ | ||||
Wide Eg perovskite | nc-SiOx:H/ITO/PTAA | Silicon | 1.76 | 18.5 | 78.5 | 25.5 | [ | ||||
Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.80 | 17.8 | 79.4 | 25.4 | [ | ||||
Cs0.1MA0.9Pb(I0.9Br0.1)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.82 | 19.2 | 75.3 | 26.2 | [ | ||||
FA0.8Cs0.2 Pb(I0.6Br0.4)3 | C60/ITO NCs/E-NiOx | FA0.8Cs0.2Pb0.5Sn0.5I3 | 1.90 | 15.4 | 80.4 | 23.5 | [ | ||||
Cs0.2FA0.8PbI1.8Br1.2 | C60/ALD SnO2/ITO NCs | FAPb0.5Sn0.5I3 | 2.03 | 16.2 | 80.3 | 26.3 | [ | ||||
Cs0.1(MA0.17FA0.83)0.9Pb (I0.83Br0.17)3 | a-Si:H(n)/ITO/NiOx | Silicon | 1.75 | 15.5 | 73.6 | 20.0 | [ | ||||
Wide Eg perovskite | nc-SiOx(n)/ITO/NiOx/2- PACz | Silicon | 1.79 | 20.11 | 79.95 | 28.84 | [ | ||||
Wide Eg perovskite | a-Si:H(n)/ITO/NiOx | Silicon | 1.82 | 16.31 | 78.32 | 23.31 | [ | ||||
Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 | nc-SiOx:H(n)/ITO | Silicon | 1.90 | 19.54 | 80.90 | 29.83 | [ | ||||
Wide Eg perovskite | a-Si:H(i/n)/ITO/NiO | Silicon | 1.85 | 19.8 | 78.9 | 28.9 | [ | ||||
MAPbI3 | p-aSi/IZO/PCBM | Silicon | 1.69 | 15.8 | 79.9 | 21.4 | [ | ||||
1.79 eV perovskite | C60/BCP/IZO/MoOx | PM6:Y6:PC71BM | 2.06 | 14.83 | 77.2 | 23.6 | [ | ||||
FA0.78Cs0.22Pb(I0.85Br0.15)3 | Passivated ETL/IZO/SAM | Silicon | 1.91 | 19.29 | 78.3 | 28.81 | [ | ||||
Cs0.05MA0.14FA0.81Pb(I0.8Br0.2)3 | N doped nc-Si/IZO/2-PACz | Silicon | 1.85 | 19.7 | 77.9 | 28.4 | [ | ||||
Wide Eg Perovskite | Poly-Si(n+)IZO | TOPCon | 1.80 | 19.4 | 81.64 | 28.49 | [ | ||||
Cs0.4FA0.6PbI1.95Br1.05 | (n+)C60/SnO1.76 | Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 | 2.03 | 15.2 | 79.7 | 24.6 | [ | ||||
FA0.8Cs0.2Pb(I0.5Br0.5)3 | SiOx/InOx/MoOx | PM6:Y6:PC61BM | 2.15 | 14.0 | 80 | 24.0 | [ | ||||
MAPbI3 | Spiro-OMeTAD/PEDOT: PSS/PEI | MAPbI3 | 1.89 | 6.61 | 56 | 7.0 | [ | ||||
PBSeDTEG8:PC61BM | TiO2/PEDOT:PSS-PH500/ PEDOT:PSS 4083 | MAPbI3 | 1.52 | 10.05 | 67 | 10.23 | [ | ||||
MAPbBr3 | Spiro-OMeTAD/PEDOT: PSS/C60 | MAPbI3 | 1.96 | 6.40 | 41 | 5.1 | [ | ||||
Cs0.4FA0.6PbI2Br | C60/SnO2/Graphene oxide/PEDOT:PSS | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.02 | 15.8 | 79.3 | 25.3 | [ | ||||
Cs0.4FA0.6PbI2.16Br0.84 | C60/SnO2-x/Graphene oxide/SnOCl | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.05 | 16.2 | 79.3 | 26.3 | [ |
[1] |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510.
DOI URL |
[2] |
WANG Y, LIN R, WANG X, et al. Oxidation-resistant all- perovskite tandem solar cells in substrate configuration. Nature Communications, 2023, 14: 1819.
DOI |
[3] |
JAYSANKAR M, RAUL B A L, BASTOS J, et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 2018, 4(1): 259.
DOI URL |
[4] |
HU H, MOGHADAMZADEH S, AZMI R, et al. Sn-Pb mixed perovskites with fullerene-derivative interlayers for efficient four-terminal all-perovskite tandem solar cells. Advanced Functional Materials, 2021, 32(12): 2107650.
DOI URL |
[5] |
JAYSANKAR M, QIU W, VAN EERDEN M, et al. Four-terminal perovskite/silicon multijunction solar modules. Advanced Energy Materials, 2017, 7(15): 1602807.
DOI URL |
[6] |
KIM S, TRINH T T, PARK J, et al. Over 30% efficiency bifacial 4-terminal perovskite-heterojunction silicon tandem solar cells with spectral albedo. Scientific Reports, 2021, 11: 15524.
DOI PMID |
[7] |
CUI Y, YAO H, ZHANG J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Advanced Materials, 2020, 32(19): 1908205.
DOI URL |
[8] |
ABDEL-SHAKOUR M, CHOWDHURY T H, MATSUISHI K, et al. High‐efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Solar RRL, 2020, 5(1): 2000606.
DOI URL |
[9] |
LIU H, WANG L, LI R, et al. Modulated crystallization and reduced VOC deficit of mixed lead-tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Letters, 2021, 6(8): 2907.
DOI URL |
[10] |
GUO T, WANG H, HAN W, et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy, 2022, 98: 107298.
DOI URL |
[11] |
WERNER J, WENG C H, WALTER A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. The Journal of Physical Chemistry Letters, 2016, 7(1): 161.
DOI URL |
[12] |
LANG K, GUO Q, HE Z, et al. High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. The Journal of Physical Chemistry Letters, 2020, 11(22): 9596.
DOI URL |
[13] |
WANG P, LI W, SANDBERG O J, et al. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21. Nano Letters, 2021, 21(18): 7845.
DOI PMID |
[14] |
LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899): 73.
DOI |
[15] |
WANG C, SHAO W, LIANG J, et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small, 2022, 18(49): 2204081.
DOI URL |
[16] |
RAJAGOPAL A, YANG Z, JO S B, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Advanced Materials, 2017, 29(34): 1702140.
DOI URL |
[17] | JOŠT M, KÖHNEN E, MORALES-VILCHES A B, et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy & Environmental Science, 2018, 11(12): 3511. |
[18] |
CHEN C C, BAE S H, CHANG W H, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2(2): 203.
DOI URL |
[19] |
HAU S K, YIP H L, ZOU J, et al. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Organic Electronics, 2009, 10(7): 1401.
DOI URL |
[20] |
AMERI T, DENNLER G, WALDAUF C, et al. Fabrication, optical modeling, and color characterization of semitransparent bulk- heterojunction organic solar cells in an inverted structure. Advanced Functional Materials, 2010, 20(10): 1592.
DOI URL |
[21] |
CHO C K, HWANG W J, EUN K, et al. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3269.
DOI URL |
[22] |
KIM Y, LEE J, KANG H, et al. Controlled electro-spray deposition of highly conductive PEDOT:PSS films. Solar Energy Materials and Solar Cells, 2012, 98: 39.
DOI URL |
[23] |
YU Z, CHEN X, HARVEY S P, et al. Gradient doping in Sn-Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Advanced Materials, 2022, 34(16): 2110351.
DOI URL |
[24] |
YU Z, WANG J, CHEN B, et al. Solution-processed ternary tin (II) alloy as hole-transport layer of Sn-Pb perovskite solar cells for enhanced efficiency and stability. Advanced Materials, 2022, 34(49): 2205769.
DOI URL |
[25] |
ZHAO D, CHEN C, WANG C, et al. Efficient two-terminal all- perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3(12): 1093.
DOI |
[26] |
XIAO K, LIN R, HAN Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(11): 870.
DOI |
[27] | CHEN K S, SALINAS J F, YIP H L, et al. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy & Environmental Science, 2012, 5(11): 9551. |
[28] | WANG Z, ZHANG C, CHEN D, et al. ITO-free semitransparent organic solar cells based on silver thin film electrodes. International Journal of Photoenergy, 2014, 2014: 209206. |
[29] |
LI X, MENG H, SHEN F, et al. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes and Pigments, 2019,166: 196.
DOI URL |
[30] |
CHEN X, JIA Z, CHEN Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 2020, 4(7): 1594.
DOI URL |
[31] |
GU X, LAI X, ZHANG Y, et al. Organic solar cell with efficiency over 20% and VOC exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Advanced Science, 2022, 9(28): 2200445.
DOI URL |
[32] |
LIN R, XIAO K, QIN Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nature Energy, 2019, 4(10): 864.
DOI |
[33] |
LI H, WANG Y, GAO H, et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight, 2022, 2(1): 21.
DOI |
[34] |
LI L, WANG Y, WANG X, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 2022, 7(8): 708.
DOI |
[35] |
JIANG Q, TONG J, SCHEIDT R A, et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science, 2022, 378(6626): 1295.
DOI PMID |
[36] |
EPERON G E, LEIJTENS T, BUSH K A, et al. Perovskite- perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861.
DOI URL |
[37] |
GAO H, LU Q, XIAO K, et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Solar RRL, 2021, 5(12): 2100814.
DOI URL |
[38] |
CHEN B, YU Z J, MANZOOR S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4(4): 850.
DOI URL |
[39] |
MAO L, YANG T, ZHANG H, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Advanced Materials, 2022, 34(40): 2206193.
DOI URL |
[40] |
CHEN W, ZHU Y, XIU J, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7(3): 229.
DOI |
[41] |
DE BASTIANI M, JALMOOD R, LIU J, et al. Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon- surface texture on perovskite properties. Advanced Functional Materials, 2022, 33(4): 2205557.
DOI URL |
[42] |
SVEINBJÖRNSSON K, LI B, MARIOTTI S, et al. Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells. ACS Energy Letters, 2022, 7(8): 2654.
DOI URL |
[43] |
ZHENG J, WEI H, YING Z, et al. Balancing charge‐carrier transport and recombination for perovskite/TOPCon tandem solar cells with double-textured structures. Advanced Energy Materials, 2022, 13(5): 2203006.
DOI URL |
[44] |
YU Z, YANG Z, NI Z, et al. Simplified interconnection structure based on C-60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5(9): 657.
DOI |
[45] |
BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604(7905): 280.
DOI |
[46] |
PO R, CARBONERA C, BERNARDI A, et al. Polymer- and carbon-based electrodes for polymer solar cells: toward low-cost, continuous fabrication over large area. Solar Energy Materials and Solar Cells, 2012, 100: 97.
DOI URL |
[47] |
JIANG F, LIU T, LUO B, et al. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 2016, 4(4): 1208.
DOI URL |
[48] |
SHENG R, HÖRANTNER M T, WANG Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. The Journal of Physical Chemistry C, 2017, 121(49): 27256.
DOI URL |
[49] |
WU X, LIU Y, QI F, et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9(35): 19778.
DOI URL |
[50] |
QIN S, LU C, JIA Z, et al. Constructing monolithic perovskite/ organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Advanced Materials, 2022, 34(11): 2108829.
DOI URL |
[51] |
DING Y, GUO Q, GENG Y, et al. A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today, 2022, 46: 101586.
DOI URL |
[52] |
XIE Y M, YAO Q, ZENG Z, et al. Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Advanced Functional Materials, 2022, 32(19): 2112126.
DOI URL |
[53] |
DATTA K, WANG J, ZHANG D, et al. Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses. Advanced Materials, 2022, 34(11): 2110053.
DOI URL |
[54] |
XIE Y M, NIU T, YAO Q, et al. Understanding the role of interconnecting layer on determining monolithic perovskite/ organic tandem device carrier recombination properties. Journal of Energy Chemistry, 2022, 71: 12.
DOI URL |
[55] |
TONG J, JIANG Q, FERGUSON A J, et al. Carrier control in Sn-Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7(7): 642.
DOI |
[56] |
CHEN H, MAXWELL A, LI C, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 2023, 613(7945): 676.
DOI |
[57] |
MAHMUD M A, ZHENG J, TANG S, et al. Water-free, conductive hole transport layer for reproducible perovskite-perovskite tandems with record fill factor. ACS Energy Letters, 2022, 8(1): 21.
DOI URL |
[58] | YAO Q, XIE Y M, ZHOU Y, et al. Dual sub-cells modification enables high‐efficiency n-i-p type monolithic perovskite/ organic tandem solar cells. Advanced Functional Materials, 2023, 33(8): 202212599. |
[59] |
CHEN B, YU Z, LIU K, et al. Grain engineering for perovskite/ silicon monolithic tandem solar cells with efficiency of 25.4%. Joule, 2019, 3(1): 177.
DOI URL |
[60] |
WU P, WEN J, WANG Y, et al. Efficient and thermally stable all-perovskite tandem solar cells using all-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Advanced Energy Materials, 2022, 12(48): 2202948.
DOI URL |
[61] |
ROGER J, SCHORN L K, HEYDARIAN M, et al. Laminated monolithic perovskite/silicon tandem photovoltaics. Advanced Energy Materials, 2022, 12(27): 2200961.
DOI URL |
[62] |
YU B, TANG F, YANG Y, et al. Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate. Advanced Materials, 2023, 35(5): 2202447.
DOI URL |
[63] |
TOCKHORN P, SUTTER J, CRUZ A, et al. Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nature Nanotechnology, 2022, 17(11): 1214.
DOI |
[64] |
LUO X, LUO H, LI H, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Advanced Materials, 2023, 35(9): 2207883.
DOI URL |
[1] | 张伦, 吕梅, 朱俊. Cs2AgBiBr6钙钛矿太阳能电池研究进展[J]. 无机材料学报, 2023, 38(9): 1044-1054. |
[2] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[3] | 郭华军, 安帅领, 孟婕, 任书霞, 王文文, 梁子尚, 宋佳钰, 陈恒彬, 苏航, 赵晋津. 卤化物钙钛矿光电阻变机理研究进展[J]. 无机材料学报, 2023, 38(9): 1005-1016. |
[4] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[5] | 丁浩明, 李勉, 李友兵, 陈科, 肖昱琨, 周洁, 陶泉争, 尹航, 柏跃磊, 张毕堃, 孙志梅, 王俊杰, 张一鸣, 黄振莺, 张培根, 孙正明, 韩美康, 赵双, 王晨旭, 黄庆. 三元层状材料结构调控及性能研究进展[J]. 无机材料学报, 2023, 38(8): 845-884. |
[6] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[7] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[8] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[9] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[10] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[11] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[12] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[13] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[14] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[15] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||