无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1062-1068.DOI: 10.15541/jim20230022
所属专题: 【能源环境】量子点(202309); 【能源环境】钙钛矿(202310)
收稿日期:
2023-01-12
修回日期:
2023-03-16
出版日期:
2023-09-20
网络出版日期:
2023-04-11
通讯作者:
相恒阳, 讲师. E-mail: xiang.hengyang@njust.edu.cn;作者简介:
王 润(1993-), 女, 博士研究生. E-mail: wangrun@njust.edu.cn
基金资助:
WANG Run(), XIANG Hengyang(), ZENG Haibo()
Received:
2023-01-12
Revised:
2023-03-16
Published:
2023-09-20
Online:
2023-04-11
Contact:
XIANG Hengyang, lecturer, E-mail: xiang.hengyang@njust.edu.cn;About author:
WANG Run (1993-), female, PhD candidate. E-mail: wangrun@njust.edu.cn
Supported by:
摘要:
钙钛矿发光二极管(PeLEDs)具有优异的光电特性, 在显示应用中表现出巨大的发展潜力。红、绿和蓝单色PeLEDs的研究已经取得了突破性的进展, 但是三色钙钛矿共同电致发光的研究始终迟滞不前。本研究在不同钙钛矿之间引入具有空穴/电子产生和传输能力的中间连接层(ICL), 实现了蓝绿双色和红绿蓝三色发光中心共同电致发光。一方面, ICL可以抑制不同钙钛矿之间的离子交换和能量转移; 另一方面, ICL具有电荷产生和输运功能, 能够确保不同发光中心获得足够的载流子实现独立发光。进一步改变空穴传输层(NPB)的厚度可以调控蓝绿双色发光中心之间的能量均衡分布, 当NPB厚度为40 nm时,器件表现出最大外量子效率(External Quantum Efficiency, EQE)为0.33%。红绿蓝钙钛矿共同电致发光器件的最大EQE达到0.5%。本工作首次报道了红绿蓝三色钙钛矿共同电致发光, 并为钙钛矿多色发光中心共同电致发光提供了具有参考性的策略, 推动了钙钛矿在显示应用中的发展进程。
中图分类号:
王润, 相恒阳, 曾海波. 钙钛矿多色级联发光二极管中多中心载流子均衡分布调控研究[J]. 无机材料学报, 2023, 38(9): 1062-1068.
WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs[J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068.
图1 (a)钙钛矿级联器件结构示意图; (b)级联结构中载流子输运过程和发光原理示意图; (c~e)红、绿和蓝三色钙钛矿发光体紫外-可见光吸收和光致发光光谱
Fig. 1 (a) Device structure diagram of tandem PeLED; (b) Diagram of carrier transport and luminescence principle in tandem PeLEDs; (c-e) UV-visible absorption and photoluminescence characterization of tri-color perovskites: (c) Quasi-2D blue perovskite films; (d) Green perovskite QDs; (e) Red perovskite QDs Colorful figures are available on website
图2 蓝绿双色级联PeLEDs能级和载流子输运过程示意图
Fig. 2 Schematic diagram of energy levels of blue/green tandem PeLED and carrier transport process Colorful figures are available on website
图3 在不同驱动电压下, 基于NPB厚度调控的蓝绿级联PeLEDs的(a, d, g)电致发光光谱、(b, e, h)光谱强度分布及(c, f, i)蓝绿光发光强度对比
Fig. 3 (a, d, g) Electroluminescence spectra, (b, e, h) intensity mappings, and (c, f, i) comparison of blue/green tandem PeLEDs with different NPB thicknesses under different driving voltages (a-c) 30 nm; (d-f) 40 nm; (g-i) 50 nm; B: Blue; G: Green Colorful figures are available on website
图5 红绿蓝三色级联PeLEDs的电致发光性能
Fig. 5 Electroluminescence spectra of red/green/blue tandem PeLEDs (a) Electroluminescence spectra under different voltages; (b) J-V-L curves; (c) EQE-V-CE curves Colorful figures are available on website
图S1 红、绿和蓝单色PeLEDs的电致发光性能
Fig. S1 EL performance of red, green, and blue monochrome PeLEDs (a) J-V curves; (b) L-V curves; (c) CE-V curves; (d) EQE-V curves
[1] |
GUALDRÓN-REYES A F, MASI, MORA-SERÓ I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends in Chemistry, 2021, 3(6): 499.
DOI URL |
[2] |
KIM Y H, CHO H, LEE T W. Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences, 2016, 113(42): 11694.
DOI URL |
[3] |
TANG X, HU Z, YUAN W, et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Advanced Optical Materials, 2017, 5(3): 1600788.
DOI URL |
[4] | 孙丽媛, 卢鹏, 邓漫君, 等. 钙钛矿材料在发光二极管中的研究进展. 材料科学与工程学报, 2021, 39(4): 698. |
[5] | 苑帅, 沈万姗, 廖良生. 基于金属卤化物钙钛矿材料的高效发光二极管. 物理, 2021, 50(6): 8. |
[6] | 曹雨, 王娜娜, 伊昌, 等. 钙钛矿发光二极管:下一代发光与显示技术. 光学学报, 2022, 42(17): 9. |
[7] |
LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245.
DOI |
[8] |
CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249.
DOI |
[9] |
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681.
DOI |
[10] |
HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligand- engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591(7848): 72.
DOI |
[11] |
XIE M, GUO J, Zhang X, et al. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Letters, 2022, 22(20): 8266.
DOI PMID |
[12] |
ZHANG J, ZHANG T, MA Z, et al. A multifunctional “halide- equivalent” anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Advanced Materials, 2022, 35(8): 2209002.
DOI URL |
[13] |
XU W, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418.
DOI |
[14] |
FANG T, WANG T, LI X, et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66(1): 36.
DOI PMID |
[15] |
LIU Z, QIU W, PENG X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Advanced Materials, 2021, 33(43): 2103268.
DOI URL |
[16] |
CHU Z, YE Q, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Advanced Materials, 2021, 33(18): 2007169.
DOI URL |
[17] |
JIANG Y, SUN C, XU J, et al. Synthesis-on-substrate of quantum dot solids. Nature, 2022, 612(7941): 679.
DOI |
[18] |
XIANG H, ZUO C, ZENG H, et al. White light-emitting diodes from perovskites. Journal of Semiconductors, 2021, 42(3): 030202.
DOI |
[19] | XIANG H, WANG R, CHEN J, et al. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer. Light: Science & Applications, 2021, 10(1): 206. |
[20] |
XIANG H, CHEN J, WANG R, et al. Perspective on single- emissive-layer white-LED based on perovskites. Applied Physics Letters, 2021, 119(8): 080502.
DOI URL |
[21] |
ZHOU Y, FANG T, LIU G, et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Advanced Functional Materials, 2021, 31(51): 2106871.
DOI URL |
[22] |
WANG R, XIANG H, CHEN J, et al. Energy regulation in white-light-emitting diodes. ACS Energy Letters, 2022, 7(6): 2173.
DOI URL |
[23] |
GHOSH S, MISHRA S, SINGH T. Antisolvents in perovskite solar cells: importance, issues, and alternatives. Advanced Materials Interfaces, 2020, 7(18): 2000950.
DOI URL |
[24] |
CHANG C, SOLODUKHIN A, LIAO S, et al. Perovskite white light-emitting diodes based on a molecular blend perovskite emissive layer. Journal of Materials Chemistry C, 2019, 7(28): 8634.
DOI |
[25] |
LIU D, LIU X, GAN Y, et al. Perovskite/organic hybrid white electroluminescent devices with the stable spectrum and extended operating lifetime. ACS Energy Letters, 2022, 7(1): 523.
DOI URL |
[26] |
YAO E P, YANG Z, MENG L, et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Advanced Materials, 2017, 29(23): 1606859.
DOI URL |
[27] |
WANG C, XUE D, SHEN X, et al. White light-emitting devices based on ZnCdS/ZnS and perovskite nanocrystal heterojunction. Nanotechnology, 2019, 30(46): 465201.
DOI URL |
[28] |
JIAN M, HONG L, YE F, et al. All-perovskite emission architecture for white light-emitting diodes. ACS Nano, 2018, 12(10): 10486.
DOI PMID |
[29] |
YAN Y, ZHANG Q, Wang Z, et al. High-efficiency tandem white perovskite light-emitting diodes by using an organic/inorganic intermediate connector. Crystals, 2022, 12(9): 1286.
DOI URL |
[30] |
ZHANG F, CAI B, SONG J, et al. Efficient blue perovskite light- emitting diodes boosted by 2D/3D energy cascade channels. Advanced Functional Materials, 2020, 30(27): 2001732.
DOI URL |
[31] |
SONG J, FANG T, LI J, et al. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30(50): 1805409.
DOI URL |
[32] |
LI Y, LI J, XU L, et al. CsPbI3 perovskite quantum dots: fine purification and highly efficient light-emitting diodes. Acta Chimica Sinica, 2021, 79(1): 126.
DOI URL |
[33] |
FUNG M, LI Y, LIAO L. Tandem organic light-emitting diodes. Advanced Materials, 2016, 28(47): 10381.
DOI URL |
[1] | 诸葛霞, 朱仁祥, 王建民, 王敬蕊, 诸葛飞. 面向类脑计算的氧化物忆阻器[J]. 无机材料学报, 2023, 38(10): 1149-1162. |
[2] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[3] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
[4] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[5] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[6] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[7] | 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏. Mg含量对Mg3(1+z)Sb2化合物热电传输性能的影响[J]. 无机材料学报, 2021, 36(8): 835-840. |
[8] | 康慧君,张校影,王燕遐,李建波,杨雄,刘达权,杨泽荣,王同敏. 变价稀土元素Eu掺杂BiCuSeO热电性能的研究[J]. 无机材料学报, 2020, 35(9): 1041-1046. |
[9] | 邱小小,周细应,傅赟天,孙晓萌,王连军,江莞. Ge1-xInxTe微观结构对热电性能的影响[J]. 无机材料学报, 2020, 35(8): 916-922. |
[10] | 孙超祥, 陈亮, 常宇, 田维, 李亮. 基于p-Se/Al2O3/n-ZnO纳米棒阵列异质结的自驱动紫外-可见光探测器[J]. 无机材料学报, 2019, 34(5): 560-566. |
[11] | 李周, 肖翀. 异层等价离子双掺杂策略优化BiCuSeO的热电性能[J]. 无机材料学报, 2019, 34(3): 294-300. |
[12] | 章楼文, 沈少立, 李露颖, 张智, 刘逆霜, 高义华. 铯铅卤化物钙钛矿型平面异质结LED的应用与发展[J]. 无机材料学报, 2019, 34(1): 37-48. |
[13] | 谢经辉, 刘雨从, 王超, 殷子薇, 陈嘉栋, 邓惠勇, 沈悦, 王林军, 张建国, 戴宁. CdZnTe晶体表面Au电极薄膜的制备及其欧姆接触性质[J]. 无机材料学报, 2018, 33(3): 273-278. |
[14] | 郭秀斌, 于 威, 李 婧, 蒋昭毅, 马登浩, 刘海旭. 利用混合溶剂实现钙钛矿材料微观结构和光电性能优化[J]. 无机材料学报, 2017, 32(8): 870-876. |
[15] | 刘 畅, 苑 帅, 张海良, 曹丙强, 吴莉莉, 尹龙卫. 铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能[J]. 无机材料学报, 2016, 31(4): 358-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||