无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1017-1030.DOI: 10.15541/jim20230016 CSTR: 32189.14.10.15541/jim20230016
所属专题: 【信息功能】敏感陶瓷(202409); 【能源环境】钙钛矿(202409)
董思吟1(), 帖舒婕1, 袁瑞涵1,2, 郑霄家1,2(
)
收稿日期:
2023-01-10
修回日期:
2023-03-27
出版日期:
2023-09-20
网络出版日期:
2023-04-11
通讯作者:
郑霄家, 副研究员. E-mail: xiaojia@caep.cn作者简介:
董思吟(1997-), 男, 博士研究生. E-mail: 1450063752@qq.com
基金资助:
DONG Siyin1(), TIE Shujie1, YUAN Ruihan1,2, ZHENG Xiaojia1,2(
)
Received:
2023-01-10
Revised:
2023-03-27
Published:
2023-09-20
Online:
2023-04-11
Contact:
ZHENG Xiaojia, associate professor. E-mail: xiaojia@caep.cnAbout author:
Dong Siyin (1997-), male, PhD candidate. E-mail: 1450063752@qq.com
Supported by:
摘要:
X射线探测在医学影像、安检、工业无损探测等领域应用广泛。卤化物钙钛矿X射线探测器因具有灵敏度高、检测下限低等显著优点而引人瞩目, 然而三维结构的钙钛矿内部离子迁移显著, 导致其稳定性较差。研究表明, 低维结构可以有效抑制钙钛矿中的离子迁移, 进而提高钙钛矿X射线探测器的稳定性。本文围绕X射线探测器的工作原理、关键性能参数、低维钙钛矿材料及器件等方面, 详细介绍了低维钙钛矿X射线探测器近期的研究进展,系统分析了低维钙钛矿材料的结构特性及其对X射线探测性能的影响。低维钙钛矿可实现兼具高灵敏度和高稳定性X射线探测器的制备, 是发展潜力巨大的候选材料。进一步优化材料体系, 设计器件结构, 制备大面积、像素化的成像器件, 深入研究探测器的工作机制等是促进低维钙钛矿X射线探测器走向应用的关键。
中图分类号:
董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030.
DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors[J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030.
图3 0D铋基钙钛矿单晶探测器
Fig. 3 0D bismuth-based perovskite single crystal detector (a) Schematic crystal structure and photograph of MA3Bi2I9 single crystal[25]; (b) Photograph of the MA3Bi2I9 single crystal after cutting and polishing[25]; (c) Resistivity of representative X-ray detection materials; (d) Device operational stability against continuous X-ray irradiation with high dose rates under a high bias volage[25]; (e) Photograph and corresponding X-ray images of the keys[54]; (f) FWHM of (00l) peaks of Cs3Bi2I9 single crystals, which are prepared by liquid diffusion separation induced crystallization method and inverse temperature crystallization method[53]
图4 1D和2D铋基钙钛矿单晶探测器
Fig. 4 1D and 2D bismuth-based perovskite single crystal detectors (a) Photograph of 1D (H2MDAP)BiI5 single crystal and schematic diagram of device structure[57]; (b, c) Crystal structure of (b) 1D (DMEDA)BiI5 and (c) 2D (NH4)3Bi2I9[29,58]; (d) Photograph of the (NH4)3Bi2I9 single crystal and two different device structures based on the (100) plane[29]
图5 2D钙钛矿X射线探测器
Fig. 5 2D perovskite X-ray detectors (a) Schematic diagram of the crystal structures of RP and DJ perovskites [63]; (b) X-ray image of nut based on (BA)2PbI4 single crystal device[64]; (c) X-ray images generated by (F-PEA)2PbI4 single crystal device[66]; (d) Schematic diagram of the transition of pure 2D perovskites to quasi-2D perovskites[70]
图6 准2D多晶X射线探测器
Fig. 6 Quasi-2D polycrystalline X-ray detector (a) Preparation of RP perovskite-nylon matrix by a lamination process[26]; (b) Photograph and corresponding X-ray image of a copper Chinese characters pattern[26]; (c) A-site cation engineering to prepare RP perovskite X-ray detectors[22]; (d) Microstructure of the TFT substrate and 12×12 pixel perovskite X-ray detector[22]; (e) Images of visible light and X-rays based on BA2MA9Pb10I31 detector[22]; (f) X-ray image based on (BA2PbBr4)0.5-FAPbI3 device[83]; (g) Dark current uniformity of MAPbI3 device (left) and quasi-2D PEA2MA8Pb9I28 device (right)[84]
Compound | Eph/keV, Vp/kVp | Thickness/ mm | Electric field/ (V·mm-1) | Sensitivity/ (µC·Gyair−1·cm−2) | LoD/ (nGyair·s−1) | Resistivity/ (Ω·cm) | Bandgap/ eV | µτ/ (cm2·V−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Single crystal | |||||||||
Cs4PbI6 | 30 keV | - | - | 451.49 | 90 | - | 3.46 | 9.7×10-4 | [ |
Cs3Bi2I9 | 40 kVp | 1.2 | 50 | 1652.3 | 130 | 2.79×1010 | 1.96 | 7.97×10-4 | [ |
Cs3Bi2I9 | 45 keV | 1 | 120 | 964 | 44.6 | 1.12×109 | ~1.89 | 1.87×10-3 | [ |
MA3Bi2i9 | 100 kVp | 2.5 | 48 | 10620 | 0.62 | 5.27×1011 | 1.98 | 2.8×10-3 | [ |
MA3Bi2i9 | 40 kVp | 1 | 60 | 1947 | 83 | 3.74×1010 | 1.99 | 2.87×10-3 | [ |
FA3Bi2I9 | 45 keV | 0.9 | ~560 | 598.1 | 200 | 7.8×1010 | 2.08 | 2.4×10-5 | [ |
(DMEDA)BiI5 | 50 kVp | 0.6 | 494 | 72.5 | - | - | 1.82 | - | [ |
(H2MDAP)BiI5 | 70 keV | 2 | 5 | 1.0 | - | 2.1×1010 | 1.83 | - | [ |
CsPbI3 | 50 kVp | - | 4.17 | 2370 | 3020 | 7.4×109 | 2.67 | 3.63×10-3 | [ |
(NH4)3Bi2I9 (∥001) | 22 keV | - | 2.2 | 8200 | 210 | - | 2.05 | 1.1×10-2 | [ |
(NH4)3Bi2I9 (⊥001) | 22 keV | - | 6.5 | 803 | 55 | - | 2.05 | 4.0×10-3 | [ |
Rb3Bi2I9 | 30 keV | 1 | 300 | 159.7 | 8.32 | 2.3×109 | 1.89 | 2.51×10-3 | [ |
(F-PEA)2PbI4 | 120 keV | 1.5 | ~130 | 3402 | 23 | 1.36×1012 | 2.30 | 5.1×10-4 | [ |
(PMA)2PbI4 | 40 kVp | 0.9 | ~56 | 283 | 2130 | - | 2.01 | 8.05×10-3 | [ |
BA2PbI4 | 30 kVp | 2 | 10 | 148 | 241 | 2.6×1011 | 2.24 | 4.5×10-4 | [ |
BA2CsPbBr7 | 40 kVp | 3.91 | 2.53 | 13260 | 72.5 | 2.2×109 | 2.74 | - | [ |
BA2EA2Pb3Br10 | 70 keV | 2 | 5 | 6.8×103 | 5500 | 4.5×1010 | 2.55 | 1.0×10-2 | [ |
(CH3OC3H9N)2CsPb2Br7 | 80 kVp | 2 | 0 | 410 | - | - | 2.51 | 3.2×10-3 | [ |
BDAPbI4 | 40 kVp | - | 310 | 242 | 430 | - | 2.37 | 4.43×10-4 | [ |
(BDA)CsPb2Br7 | 50 kVp | 0.7 | ~43 | 725.5 | 3810 | 4.35×1010 | 2.76 | 2.33×10-5 | [ |
(3AMPY)(FA)Pb2I7 | 50 kVp | 1 | 200 | 5.23×104 | 151 | - | 1.54 | 2.0×10-3 | [ |
Polycrystalline | |||||||||
MA3Bi2i9 | 35.5 keV | 1 | 210 | 563 | 9.3 | 2.28×1011 | 2.08 | 4.6×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.1 | 150 | ~35 | 140 | ~5×1011 | 2.09 | 3.89×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.05 | 600 | ~100 | 98.4 | 3.38×1011 | 2.03 | 1.6×10-6 | [ |
MA3Bi2i9 | 40 kVp | 0.1 | 2000 | 2065 | 2.71 | 3.5×108 | 1.86 | - | [ |
Cs4PbBr6 | - | 0.3 | 666.7 | 7068 | 1.75 | 1.376×1011 | 3.88 | 1.01×10-3 | [ |
Cs2TeI6 | 40 kVp | 0.025 | 25 | 19.2 | - | 4.2×1010 | 1.57 | 5.2×10-5 | [ |
BA2MA9Pb10I31 | ~60 keV | 0.9 | 110 | 5362.3 | 8.1 | ~1×1010 | ~1.60 | 3.99×10-5 | [ |
BA2MA9Pb10I31 | 45 keV | 1 | 210 | 7109 | 9.3 | ~1.1×1010 | ~1.61 | ~5×10-5 | [ |
(BA2PbBr4)0.5FAPbI3 | - | 0.006 | ~167 | 1.36×104 | 4.2 | - | - | - | [ |
PEA2MA8Pb9I28 | 50 kVp | - | 600 | 10 860 | 69 | 5.4×1010 | 1.504 | 2.6×10−5 | [ |
表1 低维钙钛矿X射线探测器性能比较
Table 1 Comparison of low-dimensional perovskite X-ray detectors
Compound | Eph/keV, Vp/kVp | Thickness/ mm | Electric field/ (V·mm-1) | Sensitivity/ (µC·Gyair−1·cm−2) | LoD/ (nGyair·s−1) | Resistivity/ (Ω·cm) | Bandgap/ eV | µτ/ (cm2·V−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Single crystal | |||||||||
Cs4PbI6 | 30 keV | - | - | 451.49 | 90 | - | 3.46 | 9.7×10-4 | [ |
Cs3Bi2I9 | 40 kVp | 1.2 | 50 | 1652.3 | 130 | 2.79×1010 | 1.96 | 7.97×10-4 | [ |
Cs3Bi2I9 | 45 keV | 1 | 120 | 964 | 44.6 | 1.12×109 | ~1.89 | 1.87×10-3 | [ |
MA3Bi2i9 | 100 kVp | 2.5 | 48 | 10620 | 0.62 | 5.27×1011 | 1.98 | 2.8×10-3 | [ |
MA3Bi2i9 | 40 kVp | 1 | 60 | 1947 | 83 | 3.74×1010 | 1.99 | 2.87×10-3 | [ |
FA3Bi2I9 | 45 keV | 0.9 | ~560 | 598.1 | 200 | 7.8×1010 | 2.08 | 2.4×10-5 | [ |
(DMEDA)BiI5 | 50 kVp | 0.6 | 494 | 72.5 | - | - | 1.82 | - | [ |
(H2MDAP)BiI5 | 70 keV | 2 | 5 | 1.0 | - | 2.1×1010 | 1.83 | - | [ |
CsPbI3 | 50 kVp | - | 4.17 | 2370 | 3020 | 7.4×109 | 2.67 | 3.63×10-3 | [ |
(NH4)3Bi2I9 (∥001) | 22 keV | - | 2.2 | 8200 | 210 | - | 2.05 | 1.1×10-2 | [ |
(NH4)3Bi2I9 (⊥001) | 22 keV | - | 6.5 | 803 | 55 | - | 2.05 | 4.0×10-3 | [ |
Rb3Bi2I9 | 30 keV | 1 | 300 | 159.7 | 8.32 | 2.3×109 | 1.89 | 2.51×10-3 | [ |
(F-PEA)2PbI4 | 120 keV | 1.5 | ~130 | 3402 | 23 | 1.36×1012 | 2.30 | 5.1×10-4 | [ |
(PMA)2PbI4 | 40 kVp | 0.9 | ~56 | 283 | 2130 | - | 2.01 | 8.05×10-3 | [ |
BA2PbI4 | 30 kVp | 2 | 10 | 148 | 241 | 2.6×1011 | 2.24 | 4.5×10-4 | [ |
BA2CsPbBr7 | 40 kVp | 3.91 | 2.53 | 13260 | 72.5 | 2.2×109 | 2.74 | - | [ |
BA2EA2Pb3Br10 | 70 keV | 2 | 5 | 6.8×103 | 5500 | 4.5×1010 | 2.55 | 1.0×10-2 | [ |
(CH3OC3H9N)2CsPb2Br7 | 80 kVp | 2 | 0 | 410 | - | - | 2.51 | 3.2×10-3 | [ |
BDAPbI4 | 40 kVp | - | 310 | 242 | 430 | - | 2.37 | 4.43×10-4 | [ |
(BDA)CsPb2Br7 | 50 kVp | 0.7 | ~43 | 725.5 | 3810 | 4.35×1010 | 2.76 | 2.33×10-5 | [ |
(3AMPY)(FA)Pb2I7 | 50 kVp | 1 | 200 | 5.23×104 | 151 | - | 1.54 | 2.0×10-3 | [ |
Polycrystalline | |||||||||
MA3Bi2i9 | 35.5 keV | 1 | 210 | 563 | 9.3 | 2.28×1011 | 2.08 | 4.6×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.1 | 150 | ~35 | 140 | ~5×1011 | 2.09 | 3.89×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.05 | 600 | ~100 | 98.4 | 3.38×1011 | 2.03 | 1.6×10-6 | [ |
MA3Bi2i9 | 40 kVp | 0.1 | 2000 | 2065 | 2.71 | 3.5×108 | 1.86 | - | [ |
Cs4PbBr6 | - | 0.3 | 666.7 | 7068 | 1.75 | 1.376×1011 | 3.88 | 1.01×10-3 | [ |
Cs2TeI6 | 40 kVp | 0.025 | 25 | 19.2 | - | 4.2×1010 | 1.57 | 5.2×10-5 | [ |
BA2MA9Pb10I31 | ~60 keV | 0.9 | 110 | 5362.3 | 8.1 | ~1×1010 | ~1.60 | 3.99×10-5 | [ |
BA2MA9Pb10I31 | 45 keV | 1 | 210 | 7109 | 9.3 | ~1.1×1010 | ~1.61 | ~5×10-5 | [ |
(BA2PbBr4)0.5FAPbI3 | - | 0.006 | ~167 | 1.36×104 | 4.2 | - | - | - | [ |
PEA2MA8Pb9I28 | 50 kVp | - | 600 | 10 860 | 69 | 5.4×1010 | 1.504 | 2.6×10−5 | [ |
[1] |
ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett., 2021, 6(2): 739.
DOI URL |
[2] |
MENG G, YE Y, FAN L, et al. Recent progress of halide perovskite radiation detector materials. J. Inorg. Mater., 2020, 35(11): 1203.
DOI |
[3] |
LIN E C. Radiation risk from medical imaging. Mayo Clin. Proc., 2010, 85(12): 1142.
DOI PMID |
[4] |
HEISS W, BRABEC C. Perovskites target X-ray detection. Nat. Photonics, 2016, 10(5): 288.
DOI |
[5] |
KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D: Appl. Phys., 2000, 33(21): 2853.
DOI URL |
[6] |
SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B, 2004, 241(3): 783.
DOI URL |
[7] |
GUERRA M, MANSO M, LONGELIN S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J. Instrum., 2012, 7(10): C10004.
DOI URL |
[8] |
LUKE P N, AMMAN M, TINDALL C, et al. Recent developments in semiconductor gamma-ray detectors. J. Radioanal. Nucl. Chem., 2005, 264(1): 145.
DOI URL |
[9] |
SCHIEBER M, HERMON H, ZUCK A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth, 2001, 225(2): 118.
DOI URL |
[10] |
JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today, 2022, 55: 110.
DOI URL |
[11] |
HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun., 2017, 8(1): 16045.
DOI PMID |
[12] |
WANG Q, ZHENG X, DENG Y, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2): 371.
DOI URL |
[13] |
GLUSHKOVA A, ANDRIČEVIĆ P, SMAJDA R, et al. Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano, 2021, 15(3): 4077.
DOI PMID |
[14] |
XIA M, SONG Z, WU H, et al. Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater., 2022, 32(16): 2110729.
DOI URL |
[15] |
ZHU M, DU X, NIU G, et al. Template directed perovskite X-ray detectors towards low ionic migration and low interpixel cross talking. Fundamental Research, 2022, 2(1): 108.
DOI URL |
[16] | MESCHER H, SCHACKMAR F, EGGERS H, et al. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Appl. Matter. Interfaces, 2020, 12(13): 15774. |
[17] |
ZHOU C, LIN H, HE Q, et al. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R Rep., 2019, 137: 38.
DOI URL |
[18] |
WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics, 2017, 11(5): 315.
DOI URL |
[19] |
QIAN W, XU X, WANG J, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 2021, 4: 942.
DOI URL |
[20] | HU M, JIA S, LIU Y, et al. Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Matter. Interfaces, 2020, 12(14): 16592. |
[21] |
YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics, 2015, 9(7): 444.
DOI |
[22] |
XIN D, ZHANG M, FAN Z, et al. A-site cation engineering of Ruddlesden-Popper perovskites for stable, sensitive, and portable direct conversion X-ray imaging detectors. J. Phys. Chem. Lett., 2022, 13: 11928.
DOI PMID |
[23] |
LIU Y, ZHANG Y, ZHU X, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater., 2021, 33(8): 2006010.
DOI URL |
[24] |
LIN Y, BAI Y, FANG Y, et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett., 2017, 2(7): 1571.
DOI URL |
[25] |
ZHENG X, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem., 2020, 49: 299.
DOI |
[26] |
ZHANG M, XIN D, DONG S, et al. Methylamine-assisted preparation of Ruddlesden-Popper perovskites for stable detection and imaging of X-rays. Adv. Opt. Mater., 2022, 10(23): 2201548.
DOI URL |
[27] |
XU X, QIAN W, WANG J, et al. Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Adv. Sci., 2021, 8(21): 2102730.
DOI URL |
[28] |
ZHANG Y, LIU Y, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun., 2020, 11: 2304.
DOI |
[29] |
ZHUANG R, WANG X, MA W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics, 2019, 13: 602.
DOI |
[30] |
AZMI R, UGUR E, SEITKHAN A, et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376(6588): 73.
DOI URL |
[31] |
JANG Y W, LEE S, YEOM K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy, 2021, 6(1): 63.
DOI |
[32] |
YAO Q, XUE Q, LI Z, et al. Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater., 2020, 32(26): 2000571.
DOI URL |
[33] |
WU Y, FENG J, YANG Z, et al. Halide perovskite: a promising candidate for next-generation X-ray detectors. Adv. Sci., 2022, 10(1): 2205536.
DOI URL |
[34] |
CHEN M, WANG C, HU W. Organic photoelectric materials for X-ray and gamma ray detection: mechanism, material preparation and application. J. Mater. Chem. C, 2021, 9(14): 4709.
DOI URL |
[35] |
XU X, QIAN W, XIAO S, et al. Halide perovskites: a dark horse for direct X-ray imaging. EcoMat, 2020, 2(4): e12064.
DOI URL |
[36] |
ROWLANDS J A. Material change for X-ray detectors. Nature, 2017, 550(7674): 47.
DOI URL |
[37] |
YANG B, PAN W, WU H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun., 2019, 10: 1989.
DOI |
[38] | XIAO Y, XUE C, WANG X, et al. Bulk heterostructure BA2PbI4/MAPbI3 perovskites for suppressed ion migration to achieve sensitive X-ray detection performance. ACS Appl. Matter. Interf., 2022, 14(49): 54867. |
[39] |
WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics, 2016, 10(5): 333.
DOI |
[40] |
YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics, 2016, 10(9): 585.
DOI |
[41] |
LI L, CHEN H, FANG Z, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater., 2020, 32(24): 1907257.
DOI URL |
[42] |
JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing. Adv. Mater., 2016, 28(24): 4766.
DOI URL |
[43] |
FANG Y, HUANG J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater., 2015, 27(17): 2804.
DOI |
[44] |
PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics, 2017, 11(11): 726.
DOI URL |
[45] |
VASILEIADOU E S, WANG B, SPANOPOULOS I, et al. Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites. J. Am. Chem. Soc., 2021, 143(6): 2523.
DOI PMID |
[46] |
DI J, CHANG J, LIU S. Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat, 2020, 2(3): e12036.
DOI URL |
[47] |
CAO F, ZHANG P, LI L. Multidimensional perovskite solar cells. Fundam. Res., 2022, 2(2): 237.
DOI URL |
[48] | SONG Y, LI L, BI W, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors. Research, 2020, 2020: 5958243. |
[49] |
HE Y, HADAR I, KANATZIDIS M G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics, 2022, 16: 14.
DOI |
[50] |
XU Y, WANG M, LEI Y, et al. Crystallization Kinetics in 2D perovskite solar cells. Adv. Energy Mater., 2020, 10(43): 2002558.
DOI URL |
[51] |
LIU Y, YANG Z, LIU S. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci., 2018, 5: 1700471.
DOI URL |
[52] |
LI W, XIN D, TIE S, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection. J. Phys. Chem. Lett., 2021, 12(7): 1778.
DOI URL |
[53] |
WEI S, TIE S, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal. Adv. Opt. Mater., 2021, 9(22): 2101351.
DOI URL |
[54] |
LIU Y, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter, 2020, 3(1): 180.
DOI URL |
[55] |
XU Q, LI C, NIE J, et al. Highly sensitive and stable X-ray detector based on a 0D structural Cs4PbI6 single crystal. J. Phys. Chem. Lett., 2021, 12(1): 287.
DOI URL |
[56] |
MOHAN R. Green bismuth. Nat. Chem., 2010, 2(4): 336.
DOI PMID |
[57] |
TAO K, LI Y, JI C, et al. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem. Mater., 2019, 31(15): 5927.
DOI |
[58] |
YAO L, NIU G, YIN L, et al. Bismuth halide perovskite derivatives for direct X-ray detection. J. Mater. Chem. C, 2020, 8(4): 1239.
DOI URL |
[59] |
ZHANG B-B, XIAO B, DONG S, et al. The preparation and characterization of quasi-one-dimensional lead based perovskite CsPbI3 crystals from HI aqueous solutions. J. Cryst. Growth, 2018, 498: 1.
DOI URL |
[60] |
ZHANG B B, LIU X, XIAO B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J. Phys. Chem. Lett., 2020, 11(2): 432.
DOI URL |
[61] |
XIA M, YUAN J H, NIU G, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater., 2020, 30(24): 1910648.
DOI URL |
[62] |
LIANG C, GU H, XIA Y, et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy, 2021, 6(1): 38.
DOI |
[63] |
LI X, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev., 2021, 121(4): 2230.
DOI PMID |
[64] |
YUKTA, GHOSH J, AFROZ M A, et al. Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS Photonics, 2022, 9(11): 3529.
DOI URL |
[65] |
SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites. Chem. Rev., 2019, 119(5): 3104.
DOI PMID |
[66] |
LI H, SONG J, PAN W, et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater., 2020, 32(40): 2003790.
DOI URL |
[67] |
QIAN C X, WANG M Z, LU S S, et al. Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved X-ray detector. Appl. Phys. Lett., 2022, 120(1): 011901.
DOI URL |
[68] |
XIAO B, SUN Q, WANG F, et al. Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. J. Mater. Chem. A, 2021, 9(22): 13209.
DOI URL |
[69] |
JI C, WANG S, WANG Y, et al. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater., 2020, 30(5): 1905529.
DOI URL |
[70] |
JI C, LI Y, LIU X, et al. Monolayer-to-multilayer dimensionality reconstruction in a hybrid perovskite for exploring the bulk photovoltaic effect enables passive X-ray detection. Angew. Chem. Int. Ed., 2021, 60(38): 20970.
DOI URL |
[71] |
LIU X, WANG S, LONG P, et al. Polarization-driven self-powered photodetection in a pingle-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed., 2019, 58(41): 14504.
DOI URL |
[72] |
SHEN Y, LIU Y, YE H, et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed., 2020, 59(35): 14896.
DOI URL |
[73] |
XIAO B, SUN Q, WANG S, et al. Two-dimensional Dion-Jacobson perovskite (NH3C4H8NH3)CsPb2Br7 with high X-ray sensitivity and peak discrimination of α-particles. J. Phys. Chem. Lett., 2022, 13(5): 1187.
DOI URL |
[74] |
LI X, KE W, TRAORÉ B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc., 2019, 141(32): 12880.
DOI PMID |
[75] | FU D, HOU Z, HE Y, et al. Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals. ACS Appl. Matter. Interf., 2022, 14(9): 11690. |
[76] |
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87.
DOI URL |
[77] |
TIE S, ZHAO W, XIN D, et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater., 2020, 32(31): 2001981.
DOI URL |
[78] |
XIN D, DONG S, ZHANG M, et al. Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors. J. Phys. Chem. Lett., 2022, 13(1): 371.
DOI URL |
[79] |
DONG S, XIN D, ZHANG M, et al. Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors. J. Mater. Chem. C, 2022, 10: 6236.
DOI URL |
[80] |
LIU X M, LI H J, CUI Q Y, et al. Molecular doping of flexible lead-free perovskite-polymer thick membranes for high-performance X-ray detection. Angew. Chem. Int. Ed., 2022, 61(41): e202209320.
DOI URL |
[81] |
CHEN H, AN B, PENG G, et al. High-quality 0D Cs4PbBr6-based dense wafer for high-sensitivity X-ray detection and high-resolution imaging in harsh environment. Adv. Opt. Mater., 2022, 11(1): 2202157.
DOI URL |
[82] |
XU Y, JIAO B, SONG T-B, et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics, 2019, 6(1): 196.
DOI URL |
[83] |
PENG J, XU Y, YAO F, et al. Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging. Matter, 2022, 5(7): 2251.
DOI URL |
[84] |
HE X, XIA M, WU H, et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv. Funct. Mater., 2022, 32(7): 2109458.
DOI URL |
[85] |
JI R, ZHANG Z, HOFSTETTER Y J, et al. Perovskite phase heterojunction solar cells. Nat. Energy, 2022, 7: 1170.
DOI |
[86] |
JIN P, TANG Y, LI D, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat. Commun., 2023, 14: 626.
DOI PMID |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||