无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 1097-1102.DOI: 10.15541/jim20220777 CSTR: 32189.14.10.15541/jim20220777
所属专题: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
收稿日期:
2022-12-29
修回日期:
2023-03-08
出版日期:
2023-09-20
网络出版日期:
2023-04-11
通讯作者:
朱 俊, 教授. E-mail: jzhu@hfut.edu.cn作者简介:
韩 旭(1999-), 男, 硕士研究生. E-mail: hanxu0050@163.com
基金资助:
HAN Xu(), YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun()
Received:
2022-12-29
Revised:
2023-03-08
Published:
2023-09-20
Online:
2023-04-11
Contact:
ZHU Jun, professor. E-mail: jzhu@hfut.edu.cnAbout author:
HAN Xu (1999-), male, Master candidate. E-mail: hanxu0050@163.com
Supported by:
摘要:
溶液制备的钙钛矿薄膜通常含有大量晶界, 会降低薄膜结晶质量, 导致缺陷复合, 不利于提升器件性能。因此,制备更高结晶质量的薄膜来进一步提升能量转化效率是钙钛矿太阳能电池面临的挑战。液晶分子具有强的自组装能力和形貌调节能力, 本研究引入一种向列型单分子液晶4-氰基-4′-戊基联苯(5CB)作为甲脒铅碘(CH(NH2)2PbI3, FAPbI3)钙钛矿前驱液的添加剂, 可以增大钙钛矿晶粒尺寸, 减少晶界。此外, 5CB的氰基能钝化钙钛矿晶粒表面未配位的Pb2+, 降低缺陷态密度, 从而抑制非辐射复合。经过优化, 添加0.2 mg/mL 5CB的钙钛矿太阳能电池的能量转化效率达到21.27%, 开路电压为1.086 V, 电流密度为24.17 mA/cm2, 填充因子为80.96%。本研究证明使用单分子液晶作为添加剂是提升FAPbI3钙钛矿电池性能的有效策略。
中图分类号:
韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102.
HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102.
图4 5CB-0.2和Control FAPbI3薄膜的(a) Pb4f, (b) I3d和(c) N1s XPS谱图
Fig. 4 (a) Pb4f, (b) I3d and (c) N1s XPS spectra for FAPbI3 films of 5CB-0.2 and Control Colorful figures are available on website
图5 Control和5CB-x FAPbI3薄膜的(a)紫外-可见吸收光谱和(b)荧光光谱
Fig. 5 (a) UV-Vis absorption spectra, (b) PL spectra for FAPbI3 films of Control and 5CB-x Colorful figures are available on website
Sample | VOC/V | JSC/(mA·cm-2) | FF /% | PCE/% |
---|---|---|---|---|
Control | 1.056 | 23.73 | 80.07 | 20.08 |
5CB-0.1 | 1.065 | 23.64 | 80.61 | 20.29 |
5CB-0.2 | 1.086 | 24.17 | 80.96 | 21.27 |
5CB-0.3 | 1.069 | 24.09 | 80.69 | 20.83 |
表1 前驱液中添加不同浓度5CB的FAPbI3太阳能电池的光伏参数
Table 1 Photovoltaic parameters of FAPbI3 solar cells with different concentrations of 5CB in the precursor
Sample | VOC/V | JSC/(mA·cm-2) | FF /% | PCE/% |
---|---|---|---|---|
Control | 1.056 | 23.73 | 80.07 | 20.08 |
5CB-0.1 | 1.065 | 23.64 | 80.61 | 20.29 |
5CB-0.2 | 1.086 | 24.17 | 80.96 | 21.27 |
5CB-0.3 | 1.069 | 24.09 | 80.69 | 20.83 |
图7 Control和5CB-x (a)单空穴器件的暗态J-V曲线和(b)FAPbI3太阳能电池的电化学阻抗谱
Fig. 7 (a) Dark J-V curves of hole-only devices, and (b) Nyquist plots for FAPbI3 solar cells of Control and 5CB-x Colorful figures are available on website
[1] |
LUO X, LIN X, GAO F, et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem., 2022, 65(12): 2369.
DOI |
[2] |
RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235.
DOI URL |
[3] |
DONG Y, ZOU Y, SONG J, et al. Recent progress of metal halide perovskite photodetectors. J. Mater. Chem. C, 2017, 5(44): 11369.
DOI URL |
[4] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.
DOI PMID |
[5] |
KIN M, JEONG J, LU H Z, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[6] | NREL. Best Research-cell Efficiencies[2022-12-10]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf. |
[7] |
HU Y, GAO L, SU H, et al. Amino acid-based low-dimensional management for enhanced perovskite solar cells, Sol. RRL, 2022, 6(7): 2200168.
DOI URL |
[8] |
LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells, Nat. Rev. Mater., 2020, 5(1): 44.
DOI |
[9] | YANG L, FENG L, LIU Z, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater., 2022, 34(24): 220168. |
[10] |
ZHU J, QIAN Y, LI Z, et al. Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability. Adv. Energy Mater., 2022, 12(20): 2200632.
DOI URL |
[11] |
LI X, WU X, LI B, et al. Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci., 2022, 15(11): 4813.
DOI URL |
[12] | CHEN C, WANG X, LI Z, et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed., 2021, 61(8): e202113932. |
[13] |
DENG X, XIE L, WANG S, et al. Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chem. Eng. J., 2020, 398: 125594.
DOI URL |
[14] |
WANG S, WANG A, DENG X, et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A, 2020, 8(25): 12201.
DOI URL |
[15] |
CHEN J, PARK N. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS. Energy Lett., 2020, 5(8): 2742.
DOI URL |
[16] |
KATO T, MIZOSHITA N, KISHIMOTO K. Functional liquid- crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed., 2006, 45(1): 38.
DOI URL |
[17] |
ARIVUNITHI V, REDDY S, SREE V, et al. Efficiency exceeding 20% in perovskite solar cells with side-chain liquid crystalline polymer-doped perovskite absorbers. Adv. Energy Mater., 2018, 8(30): 1801637.
DOI URL |
[18] |
ARIVUNITHI V, PARK H, REDDY S, et al. A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability. Org. Electron., 2021, 88: 105987.
DOI URL |
[19] |
XIA X, PENG J, WAN Q, et al. Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability. ACS Appl. Mater. Interf., 2021, 13(15): 17677.
DOI URL |
[20] | HUANG Y, LEI X, HE T, et al. Recent progress on formamidinium- dominated perovskite photovoltaics. Adv. Energy Mater., 2021, 12(4): 21006. |
[21] |
CORREA-BAENA J, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739.
DOI URL |
[22] |
TAO L, WAGN Z, DUAN K, et al. Liquid crystal molecule as “binding agent” enables superior stable perovskite solar cells with high fill factor. Sol. RRL, 2019, 3(8): 1900125.
DOI URL |
[23] | DU X, ZHANG L, CHEN R, et al. Spontaneous interface healing by a dynamic liquid-crystal transition for high-performance perovskite solar cells. Adv. Mater., 2022, 34(49): 22073632. |
[24] |
CHEN L, CHEN J, WANG C, et al. High-light-tolerance PbI2 boosting the stability and efficiency of perovskite solar cells. ACS Appl. Mater. Interf., 2021, 13(21): 24692.
DOI URL |
[25] |
LI Y, CUI K, XU X, et al. Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector. J. Phys. Chem. C, 2020, 124(28): 15107.
DOI URL |
[26] |
WU Y, WANG Q, CHEN Y, et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defect synergistically. Energy Environ. Sci., 2022, 15(11): 4700.
DOI URL |
[27] |
DUIJINSTEE E, BALL J, CONE V, et al. Toward understanding space-charge limited current measurements on metal halide perovskites, ACS Energy Lett., 2020, 5(2): 376.
DOI URL |
[28] |
BUBE R. Trap density determination by space-charge-limited currents. J. Chem. Phys., 1962, 33(5): 1733.
DOI URL |
[29] |
MAO P, ZHOU Q, JIN Z, et al. Efficiency-enhanced planar perovskite solar cells via an isopropanol/ethanol mixed solvent process. ACS Appl. Mater. Interf., 2016, 8(36): 23837.
DOI URL |
[1] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[5] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[6] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[7] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[8] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[9] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[10] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[11] | 马婷婷, 汪志鹏, 张梅, 郭敏. 超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究[J]. 无机材料学报, 2023, 38(12): 1387-1395. |
[12] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. |
[13] | 焦博新, 刘兴翀, 全子威, 彭永姗, 周若男, 李海敏. L-精氨酸掺杂钙钛矿太阳电池性能研究[J]. 无机材料学报, 2022, 37(6): 669-675. |
[14] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[15] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||