Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (6): 571-578.DOI: 10.3724/SP.J.1077.2011.00571
• Review • Previous Articles Next Articles
JIN Zhi-Liang, LV Gong-Xuan
Received:
2010-09-20
Revised:
2010-12-01
Published:
2011-06-20
Online:
2011-06-07
Supported by:
973Program (2007CB613305, 2009CB220003, 2009AA05Z117); Chinese Academy of Sciences Solar Programme (KGCX2-YW-390-1, KGCX2-YW-390-3)
CLC Number:
JIN Zhi-Liang, LV Gong-Xuan. Modification of TiO2 Photocatalysts with Metalloid Anions and the Applicaton in Salt Solution System[J]. Journal of Inorganic Materials, 2011, 26(6): 571-578.
Add to citation manager EndNote|Ris|BibTeX
[1] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96.[2] Kudo A, Kato H, Tsuji I. Strategies for the development of visible- light-driven photocatalysts for water splitting. Chemistry Letters, 2004, 33(12): 1534-1539.[3] Moon S C, Mametsuka H, Tabata S, et al. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 2000, 58(2/3): 125-132.[4] Zhao W, Ma W H, Zhao J C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782-4783.[5] Jin Z L, Lu G X. Efficiently photocatalytic hydrogen evolution over Ptx-TiO2-yBy catalysts in a ternary system of K+, Mg2+/B4O72--H2O at 25℃. Energy & Fuels, 2005, 19(3): 1126-1132.[6] Su Y L, Han S, Zhang X W, et al. Preparation and visible- light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Materials Chemistry and Physics, 2008, 110(2/3): 239-246.[7] Finazzi E, Di Valentin C, Pacchioni G. Boron-doped anatase TiO2: pure and hybrid DFT calculations. Journal of Physical Chemistry C, 2009, 113(1): 220-228.[8] Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental, 2001, 32(4): 215-227.[9] Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243-2245.[10] Sakthivel S, Kich H. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie-International Edition, 2003, 42(40): 4908-4911.[11] Dong F, Wang H Q, Wu Z B. One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(38): 16717-16723.[12] Mai L X, Huang C M, Wang D W, et al. Effect of C doping on the structural and optical properties of Sol-Gel TiO2 thin films. Applied Surface Science, 2009, 255(22): 9285-9289.[13] Wang H Q, Wu Z B, Liu Y A. Simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. Journal of Physical Chemistry C, 2009, 113(30): 13317-13324.[14] Janus M, Tryba B, Inagaki M, et al. New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Applied Catalysis B: Environmental, 2004, 52(1): 61-67.[15] Colòn G, Hidalgo M C, Macías M, et al. Enhancement of TiO2/C photocatalytic activity by sulfate promotion. Applied Catalysis B: General, 2004, 259(2): 235-243.[16] Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon, 2004, 42(5/6): 1147-1151.[17] Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters, 1986, 123(1/2): 126-128.[18] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium Oxides. Science, 2001, 293(5528): 269-271.[19] Li L, Liu C Y. Facile synthesis of anatase-brookite mixed-phase N-doped TiO2 nanoparticles with high visible-light photocatalytic activity. European Journal of Inorganic Chemistry, 2009, 25: 3727-3733.[20] Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials, 2009, 168(1): 253-261.[21] Jayakumar O D, Sasikala R, Betty C A, et al. A rapid method for the synthesis of nitrogen doped TiO2 nanoparticles for photocatalytic hydrogen generation. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4663-4667.[22] Yu A M, Wu G J, Zhang F X, et al. Synthesis and characterization of N-doped TiO2 nanowires with visible light response. Catalysis Letters, 2009, 129(3/4): 507-512.[23] Diwald O, Thompson T L, Yates Jr J T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. Journal of Physical Chemistry B, 2004, 108(1): 52-57.[24] Premkumar J. Development of super-hydrophilicity on nitrogen- doped TiO2 thin film surface by photoelectrochemical method under visible light. Chemical Materials, 2004, 16(21): 3980-3981.[25] Gole J L, Stout J D. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. Journal of Physical Chemistry B, 2004, 108(4): 1230-1240.[26] Chen X B, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. Journal of Physical Chemistry B, 2004, 108(40): 15446-15449.[27] Hattori A, Shimoda K, Tada H, et al. Photoreactivity of Sol-Gel TiO2 films formed on soda-lime glass substrates: effect of SiO2 underlayer containing fluorine. Langmuir, 1999, 15(16): 5422-5425.[28] Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14(10): 3808-3816.[29] Yu C, Yu J C, Chan M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. Journal of Solid State Chemistry, 2009, 182(5): 1061-1069.[30] Wu G, Chen A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 195(1): 47-53.[31] Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. Journal of Fluorine Chemistry, 2005, 126(1): 69-77.[32] Lv Y Y, Yu L S, Huang H Y, et al. Preparation of F-doped titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4. Applied Surface Science, 2009, 255(23): 9548-9552.[33] Liu G, Chen Z G, Dong C L, et al. Visible light photocatalyst: Iodine- doped mesoporous titania with a bicrystalline framework. Journal of Physical Chemistry B, 2006,110(42): 20823-20828.[34] Yang K S, Dai Y, Huang B B, et al. Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chemistry of Materials, 2008, 20(20): 6528-6534.[35] Wu X W, Wu D J, Liu X. J. Optical investigation on sulfur-doping effects in titanium dioxide nanoparticles. Applied Physics A-Materials Science & Processing, 2009, 97(1): 243-248.[36] Hamadanian M, Reisi-Vanani A, Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Material Chemical Physics, 2009, 116(2/3): 376-382.[37] Lei Z B, You W S, Li C, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal methed. Chemical Communications, 2003, 17: 2142-2143.[38] Ishikawa A, Takata T, Domen K, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (650 nm). Journal of the American Chemical Society, 2002, 124(45): 13547-13553.[39] Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solution under visible light irradiation. Chemical Communications, 2002(17): 1958-1959.[40] Yu H F. Photocatalytic abilities of gel-derived P-doped TiO2. Journal of Physics and Chemistry of Solids, 2007, 68(4): 600-607.[41] Yu H F. Phase development and photocatalytic ability of gel-derived P-doped TiO2. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||