Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (6): 561-570.DOI: 10.3724/SP.J.1077.2011.00561
• Review • Next Articles
YUAN Xiao-Ya
Received:
2010-09-27
Revised:
2010-12-02
Published:
2011-06-20
Online:
2011-06-07
Supported by:
Municipal Science Foundation Project of CQ CSTC (2007BB4442) and of CQEC (KJ070402); Open-ended Fund of Hi-tech Lab for Mountain Road Construction and Maintenance, CQTJU (CQMRCM-10-5)
CLC Number:
YUAN Xiao-Ya. Progress in Preparation of Graphene[J]. Journal of Inorganic Materials, 2011, 26(6): 561-570.
Add to citation manager EndNote|Ris|BibTeX
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.[2] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.[3] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.[4] Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics. Chem. Rev., 2007, 107(3): 718-747.[5] Rao C N R, Sood A k, Voggu R, et al. Some novel attributes of graphene. J. Phys. Chem. Lett., 2010, 1(2): 572-580.[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of Graphene. Chem. Rev., 2010, 110(1): 132-145.[7] Zhang Y, Tan J W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201-204.[8] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146(9/10): 351-355.[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902-907.[10] Schadler L S, Giannris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett., 1998, 73(26): 3842-3847.[11] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523-527.[12] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.[13] Van den Brink J. Graphene-from strength to strength. Nat. Nanotechnol., 2007, 2(4): 199-201.[14] Weitz R T, Yacoby A. Graphene rests easy. Nat. Nanotechnol., 2010, 5(10): 699-700.[15] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Materials today, 2010, 13(3): 28-38.[16] Park R, Ruoff R S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4): 217-224.[17] 徐秀娟, 秦金贵, 李 振. 石墨烯研究进展. 化学进展, 2009, 21(12): 2559-2567.[18] 黄 毅, 陈永胜. 石墨烯的功能化及其相关应用. 中国科学B辑, 2009, 39(9): 887-896.[19] 李 旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究. 材料导报, 2008, 22(8): 48-52.[20] Müllen M, Kübel C, Müllen K. Giant polycyclic aromatic hydrocarbons. Chem. Eur. J., 1998, 4(11): 2099-2109.[21] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene- based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558-1565.[22] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9): 563-568.[23] Khan U, O'Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864-871.[24] Hamilton C E,-Lomeda J R, Sun Z, et al. High-yield organic dispersions of unfunctionalized graphene. Nano Lett., 2009, 9(10): 3460-3462.[25] Biswas S, Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett., 2009, 9(1): 167-172.[26] Qian W, Hao R, Hou Y, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res., 2009, 2: 706-712.[27] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc., 2009, 131(10): 3611-3620.[28] De S, King P J, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458-464.[29] Englert J M, R-hrl J, Schmidt C D, et al. Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide- based bolaamphiphile. Adv. Mater., 2009, 21(42): 4265-4269.[30] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol., 2008, 3(9): 538-542.[31] Janowska I, Chizari K, Ersen O, et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res., 2010, 3(2): 126-137.[32] Pu N W, Wang C, Sung Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett., 2009, 63(23): 1987-1989.[33] Knieke C, Berger A, Voigt M, et al. Scalable production of graphene sheets by mechanical delamination. Carbon, 2010, 48(11): 3196-3204.[34] Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films.--Thin Solid Films, 2005, 492(1/2): 124-130.[35] Zhu M, Wang J, Outlaw R A, et al. Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diam. Relat. Mater., 2007, 16(2): 196-201.[36] Wang J, Zhu M, Outlaw R A, et al . Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition.-Carbon, 2004, 42(14): 2867-2872.[37] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191-1196.[38] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52): 19912-19916.[39] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706-710.[40] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett., 2010, 10(2): 490-493.[41] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1): 30-35.[42] Faugeras C, Faugeras B, Orlita M, et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 2010, 4(4): 1889-1892.[43] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5): 406-411.[44] 刘忠良. 碳化硅薄膜的外延生长、结构表征与石墨烯的制备. 合肥: 中国科学技术大学博士论文, 2009.[45] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide and graphene: versatile building blocks for carbon- based materials. Small, 2010, 6(6): 711-723.[46] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1): 228-240.[47] Tsuyoshi N, Yoshiaki M. Formation process and structure of graphite oxide.-Carbon, 1994, 32 (3): 469-475.[48] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber. Dt. Sch. Chem. Ges., 1898, 31(2): 1481-1487.[49] Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys., 1860, 59: 466-472.[50] Hummers W, Offeman R. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6): 1339.[51] Chattopadhyay J, Mukherjee A, Billups W E, et al. Graphite epoxide. J. Am. Chem. Soc., 2008, 130(16): 5414-5415.[52] Wissler M. Graphite and carbon powders for electrochemical applications. J. Power Sources, 2006, 156(2): 142-150.[53] Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23): 4477-4482.[54] Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, 18(11): 2740-2749.[55] Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide after heat and chemical treatments by X-ray photoelectron and micro-Raman sp |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
[14] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[15] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||