Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (7): 741-753.DOI: 10.15541/jim20230560
Special Issue: 【制备方法】3D打印(202409); 【结构材料】超高温结构陶瓷(202409)
• REVIEW • Next Articles
CHEN Qian1(), SU Haijun1,2(
), JIANG Hao1, SHEN Zhonglin1, YU Minghui1, ZHANG Zhuo1(
)
Received:
2023-12-05
Revised:
2024-01-04
Published:
2024-07-20
Online:
2024-01-31
Contact:
SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn;About author:
CHEN Qian (2000-), male, Master candidate. E-mail: cq12138@mail.nwpu.edu.cn
Supported by:
CLC Number:
CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution[J]. Journal of Inorganic Materials, 2024, 39(7): 741-753.
Laser type | CO2 laser | Nd: YAG laser | Yb-fiber laser |
---|---|---|---|
Wavelength/μm | 10.6 | 1.06 | 1.07 |
Efficiency/% | 5-20 | 1-3 | 10-30 |
Output power/kW | ~20 | ~16 | ~10 |
Beam quality factor | 3-5 | 0.4-20 | 0.3-4 |
Preferred material | Ceramic/polymer | Metal | Metal |
Table 1 Lasers for LAM and their characteristics[19]
Laser type | CO2 laser | Nd: YAG laser | Yb-fiber laser |
---|---|---|---|
Wavelength/μm | 10.6 | 1.06 | 1.07 |
Efficiency/% | 5-20 | 1-3 | 10-30 |
Output power/kW | ~20 | ~16 | ~10 |
Beam quality factor | 3-5 | 0.4-20 | 0.3-4 |
Preferred material | Ceramic/polymer | Metal | Metal |
Fig. 1 Principle of selective laser melting (SLM) and as-prepared oxide ceramic samples (a) Schematic diagram[22]; (b) ZrO2 ceramic[23]; (c) Al2O3/GAP eutectic ceramic[24]; (d) Al2O3/GAP/ZrO2 eutectic ceramic[25]
Fig. 2 Principle of laser directed energy deposition (LDED) and as-prepared oxide ceramic samples (a) Schematic diagram[26]; (b) Al2O3/ GdAlO3/ZrO2 eutectic ceramic with complex structure[29]; (c) Graded Al2O3/ZrO2 eutectic ceramic[31]; (d) Rod-like Al2O3/GdAlO3/ZrO2 eutectic ceramic[30]
Process | Preferred laser | Power/W | Building rate / (cm3·min-1) | Dimensional accuracy/mm | Surface roughness/μm | Application |
---|---|---|---|---|---|---|
SLM | Nd: YAG laser/fiber laser | 50-1000 | 1.3 | 0.04-0.2 | 7-20 | High precision and small scale component |
LDED | CO2 laser | 100-3000 | 11.5 | 0.5-1.0 | 4-10 | Large scale component |
Table 2 Comparison of process characteristics of SLM and LDED[32]
Process | Preferred laser | Power/W | Building rate / (cm3·min-1) | Dimensional accuracy/mm | Surface roughness/μm | Application |
---|---|---|---|---|---|---|
SLM | Nd: YAG laser/fiber laser | 50-1000 | 1.3 | 0.04-0.2 | 7-20 | High precision and small scale component |
LDED | CO2 laser | 100-3000 | 11.5 | 0.5-1.0 | 4-10 | Large scale component |
Fig. 3 Microstructures of single-phase oxide ceramics prepared by LDED (a, b) Cross section (a) and longitudinal section (b) of Al2O3 ceramic[33]; (c, d) Longitudinal section of ZrO2 ceramic (c) and its magnified image (d)[34]
Phase | Entropy/ (J·mol-1·K-1) | Jackson factor | Growth manner |
---|---|---|---|
Al2O3 | 48 | 5.74 | Faceted |
GAP | 16.5 | 1.9 | Non-faceted |
YAG | 122 | 14.72 | Faceted |
ZrO2 | 30 | 3.55 | Weak faceted |
Table 3 Entropy of different phases in eutectic and corresponding growth manner[35-36]
Phase | Entropy/ (J·mol-1·K-1) | Jackson factor | Growth manner |
---|---|---|---|
Al2O3 | 48 | 5.74 | Faceted |
GAP | 16.5 | 1.9 | Non-faceted |
YAG | 122 | 14.72 | Faceted |
ZrO2 | 30 | 3.55 | Weak faceted |
Fig. 4 Typical microstructure morphologies of cross/longitudinal sections of LAM fabricated oxide eutectic ceramics (a) Periodic banded structure and (b) magnified image[42]; (c) Three ways of intersectional dispersion microstructure[36]; (d) Colony structure and (d1, d2) magnified images[36]
Fig. 5 Microstructure of Al2O3/ZrO2 eutectic ceramic and corresponding crystallographic orientation[43] (a) Transversal section; (b) Corresponding EBSD pole figures of Al2O3 and ZrO2 with (b1) EBSD phases and (b2) IPF (inverse pole figure); (c) Transverse sectional TEM (transmission electron microscope) image with (c1) SAED (selected area electron diffraction) and (c2) HRTEM (high-resolution TEM) at Al2O3/ZrO2 interface
Fig. 6 Microstructure and orientation evolution of Al2O3/YAG eutectic ceramic along deposition direction[37] (a) Longitudinal section; (b) Orientation variations of Al2O3 and YAG along the height; (c1, c2) TEM images and SAED patterns of (c1) irregular and (c2) regular eutectic inverse pole figures
Eutectic system | Preparation method | Crystal orientation relationship |
---|---|---|
Al2O3/YAG/ZrO2 | Laser directed energy deposition[ Optical floating zone method[ | [0001]Al2O3∥[001]YAG∥[001]ZrO2 <11¯00>Al2O3∥<001>YAG∥<001>ZrO2 |
Al2O3/ZrO2 | Laser directed energy deposition[ Laser floating zone method[ | [112¯0]Al2O3∥[001]ZrO2 [022¯1]Al2O3∥[111]ZrO2 |
Al2O3/YAG | Bridgman[ Laser directed energy deposition[ | [101¯0]Al2O3∥[101]YAG [101¯0]Al2O3∥[111]YAG |
Table 4 Crystal orientation relationship of the oxide eutectic ceramics by different preparation methods
Eutectic system | Preparation method | Crystal orientation relationship |
---|---|---|
Al2O3/YAG/ZrO2 | Laser directed energy deposition[ Optical floating zone method[ | [0001]Al2O3∥[001]YAG∥[001]ZrO2 <11¯00>Al2O3∥<001>YAG∥<001>ZrO2 |
Al2O3/ZrO2 | Laser directed energy deposition[ Laser floating zone method[ | [112¯0]Al2O3∥[001]ZrO2 [022¯1]Al2O3∥[111]ZrO2 |
Al2O3/YAG | Bridgman[ Laser directed energy deposition[ | [101¯0]Al2O3∥[101]YAG [101¯0]Al2O3∥[111]YAG |
Fig. 8 Microstructures at top region of the Al2O3/GAP eutectic ceramics under different scanning rates[36] (a) 4 mm/min; (b) 8 mm/min; (c) 16 mm/min; (d) 30 mm/min
Material | Hardness/GPa | Fracture toughness/(MPa·m1/2) | Flexural strength/MPa | Preparation method |
---|---|---|---|---|
Al2O3 | 16 18.91 | / 3.55 | / 350 | Sintering[ LDED[ |
ZrO2(Y2O3) | 19.80 | / | / | LDED[ |
Al2O3/ZrO2 | / 15.3 / 18.59 / | 6.03 7.8 / 6.52 7.67/8.70 | 525 / 538 / / | Sintering[ DS[ SLM[ LDED[ LDED (ultrasonic assisted/C fiber)[ |
Al2O3/GAP | 23.36 17.1 15.16 | 3.12 4.5 4.3 | / / / | DS[ SLM[ LDED[ |
Al2O3/TiO2 | 16.38 | 3.75 | 212 | LDED[ |
Al2O3/SiO2 | 11.10 18.39 18.64 | 2.54 3.07 3.54 | 350 310 504 | Sintering[ LDED[ LDED (heat treatment)[ |
Al2O3/YAG | 17.50 17.35 21.50 | 3.60 3.14 5.86 | / / / | DS[ LDED[ LDED (water cooling)[ |
Al2O3/GAP/ZrO2 | 17.50 17.90 15.30 | 6.50 8.50 7.80 | 485 / / | Sintering[ DS[ SLM[ |
Al2O3/YAG/ZrO2 | 15.80 18.90 | 3.90 3.84 | / / | DS[ LDED[ |
Table 5 Comparison of mechanical properties among different oxide ceramics prepared by different LAM technologies
Material | Hardness/GPa | Fracture toughness/(MPa·m1/2) | Flexural strength/MPa | Preparation method |
---|---|---|---|---|
Al2O3 | 16 18.91 | / 3.55 | / 350 | Sintering[ LDED[ |
ZrO2(Y2O3) | 19.80 | / | / | LDED[ |
Al2O3/ZrO2 | / 15.3 / 18.59 / | 6.03 7.8 / 6.52 7.67/8.70 | 525 / 538 / / | Sintering[ DS[ SLM[ LDED[ LDED (ultrasonic assisted/C fiber)[ |
Al2O3/GAP | 23.36 17.1 15.16 | 3.12 4.5 4.3 | / / / | DS[ SLM[ LDED[ |
Al2O3/TiO2 | 16.38 | 3.75 | 212 | LDED[ |
Al2O3/SiO2 | 11.10 18.39 18.64 | 2.54 3.07 3.54 | 350 310 504 | Sintering[ LDED[ LDED (heat treatment)[ |
Al2O3/YAG | 17.50 17.35 21.50 | 3.60 3.14 5.86 | / / / | DS[ LDED[ LDED (water cooling)[ |
Al2O3/GAP/ZrO2 | 17.50 17.90 15.30 | 6.50 8.50 7.80 | 485 / / | Sintering[ DS[ SLM[ |
Al2O3/YAG/ZrO2 | 15.80 18.90 | 3.90 3.84 | / / | DS[ LDED[ |
[1] | 傅恒志. 航空航天材料定向凝固. 北京: 科学出版社, 2015: 1. |
[2] | 宋希文. “热障涂层新材料、制备技术及性能评价”专题序言. 装备环境工程, 2019, 16(1): 10. |
[3] | JAMES C W, EDGAR A S. Progress in structural materials for aerospace systems. Acta Materialia, 2003, 51(19): 5775. |
[4] | 孔祥灿, 张子卿, 朱俊强, 等. 航空发动机气冷涡轮叶片冷却结构研究进展. 推进技术, 2022, 43(5): 6. |
[5] | LIU L, WANG S Z, ZHANG B Q, et al. Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review. Journal of Manufacturing Processes, 2023, 97: 12. |
[6] | 耿广仁, 周明星, 周长灵, 等. 高温陶瓷纤维/高温陶瓷基复合材料研究进展. 佛山陶瓷, 2019, 29(11): 9. |
[7] | LIU Y, SU H J, SHEN Z L, et al. Effect of seed orientations on crystallographic texture control in faceted Al2O3/YAG eutectic ceramic during directional solidification. Journal of Materials Science & Technology, 2023, 146: 86. |
[8] | DUAN B H, MAO L, LV M R, et al. Interface interaction during the preparation of TiAl-(Nb, V) quaternary intermetallic single crystals by directional solidification based on Y2O3 doped BaZrO3/Al2O3 composite ceramic mold. Journal of the European Ceramic Society, 2023, 43(11): 5032. |
[9] | LIU Y, SU H J, SHEN Z L, et al. High temperature calcium- magnesium-alumina-silicate (CMAS) corrosion behavior of directionally solidified Al2O3/YAG eutectic ceramic. Journal of Materials Science & Technology, 2023, 165: 66. |
[10] | SUN H F, SUN L C, REN X M, et al. Outstanding molten calcium- magnesium-aluminosilicate (CMAS) corrosion resistance of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic at 1500 °C. Corrosion Science, 2023, 220: 111289. |
[11] | WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength at 1873 K. Nature, 1997, 389: 49. |
[12] | NAKAGAWA N, OHTSUBO H, MITANI A, et al. High temperature strength and thermal stability for melt growth composite. Journal of the European Ceramic Society, 2005, 25: 1251. |
[13] | ARMSTRONG M, MEHRABI H, NAVEED N. An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 2022, 84: 1001. |
[14] | LIU J K, HUANG J Q, ZHENG Y F, et al. Challenges in topology optimization for hybrid additive-subtractive manufacturing: a review. Computer-Aided Design, 2023, 161: 103531. |
[15] | KIM Y S, CHANG W, JEONG H J, et al. High performance of protonic ceramic fuel cells with 1-μm-thick electrolytes fabricated by inkjet printing. Additive Manufacturing, 2023, 71: 103590. |
[16] | LI J G, AN X L, LIANG J J, et al. Recent advances in the stereolithographic three-dimensional printing of ceramic cores: challenges and prospects. Journal of Materials Science & Technology, 2022, 117: 79. |
[17] | ZHANG H, ZHAI Q, CAO Y, et al. Design and facile manufacturing of tri-layer laminated polyolefin microfibrous fabrics with tailoring pore size for enhancing waterproof breathable performance. Materials & Design, 2023, 228: 111829. |
[18] | PFEIFFERP S, FLORIO K, PUCCIO D, et al. Direct laser additive manufacturing of high performance oxide ceramics: a state-of-the-art review. Journal of the European Ceramic Society, 2021, 41(13): 6087. |
[19] | LEE H, LIM C H J, LOW M J, et al. Lasers in additive manufacturing: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4: 307. |
[20] | GLARDON R, KARAPATIS N, ROMANO V, et al. Influence of Nd: YAG parameters on the selective laser sintering of metallic powders. CIRP Annals, 2001, 50(1): 133. |
[21] | KRUTH J P, WANG X, LAOUI T, et al. Laser and materials in selective laser sintering. Assembly Automation, 2003, 23(4): 357. |
[22] | HU K M, LIN K J, GU D D, et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures. Materials Science and Engineering: A, 2019, 762: 138089. |
[23] | SHISHKOVSKY I, YADROITSEV I, BERTRAND P, et al. Alumina-zirconium ceramics synthesis by selective laser sintering/ melting. Applied Surface Science, 2007, 254(4): 966. |
[24] | SHEN Z L, SU H J, YU M H, et al. Large-size complex-structure ternary eutectic ceramic fabricated using laser powder bed fusion assisted with finite element analysis. Additive Manufacturing, 2023, 72: 103627. |
[25] | LIU H F, SU H J, SHEN Z L, et al. Direct formation of Al2O3/ GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: microstructure evolutions. Journal of the European Ceramic Society, 2018, 38(15): 5144. |
[26] | GU D D, DU L, DAI D H, et al. Influence of thermal behavior along deposition direction on microstructure and microhardness of laser melting deposited metallic parts. Applied Physics A, 2019, 125(7): 455. |
[27] | GU D D, SHI X Y, POPRAWE R, et al. Material-structure- performance integrated laser-metal additive manufacturing. Science, 2021, 372(6545): 932. |
[28] | KOKARE S, OLIVEIRA J P, GODINA R. A LCA and LCC analysis of pure subtractive manufacturing, wire arc additive manufacturing, and selective laser melting approaches. Journal of Manufacturing Processes, 2023, 101: 67. |
[29] | SU H J, LIU H F, JIANG H, et al. One-step preparation of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics with large size and irregular shape by directed energy deposition. Additive Manufacturing, 2023, 70: 103563. |
[30] | WU D J, SHI J, NIU F Y, et al. Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 2022, 42(6): 2957. |
[31] | LIU H F, SU H J, SHEN Z L, et al. Preparation of large-size Al2O3/GdAlO3/ZrO2ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism. Journal of Materials Science & Technology, 2021, 85: 218. |
[32] | DEBROY T, WEI L H, ZUBACK J S, et al. Additive manufacturing of metallic components—process, structure and properties. Progress in Materials Science, 2018, 92: 112. |
[33] | BALLA V K, BOSE S, BANDYOPADHYAY A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234. |
[34] | FAN Z Q, ZHAO Y T, LU M Y, et al. Yttria stabilized zirconia (YSZ) thin wall structures fabricated using laser engineered net shaping (LENS). International Journal of Advanced Manufacturing Technology, 2019, 105: 4491. |
[35] | FAN Z Q, ZHAO Y T, TAN Q Y, et al. Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping. Acta Materialia, 2019, 170: 24. |
[36] | SHEN Z L, SU H J, LIU H F, et al. Directly fabricated Al2O3/ GdAlO3 eutectic ceramic with large smooth surface by selective laser melting: rapid solidification behavior and thermal field simulation. Journal of the European Ceramic Society, 2022, 42(3): 1088. |
[37] | FAN Z Q, ZHAO Y T, TAN Q Y, et al. New insights into the growth mechanism of 3D-printed Al2O3-Y3Al5O12 binary eutectic composites. Scripta Materialia, 2020, 178: 274. |
[38] | PENA J I, MERINO R I, HARLAN N R, et al. Microstructure of Y2O3 doped Al2O3-ZrO2 eutectics grown by the laser floating zone method. Journal of the European Ceramic Society, 2002, 22(14/15): 2595. |
[39] | SU H J, ZHANG J, YU J C, et al. Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions. Journal of Alloys and Compounds, 2011, 509(12): 4420. |
[40] | SONG K, ZHANG J, LIN X, et al. Microstructure and mechanical properties of Al2O3/Y3Al5O12/ZrO2 hypereutectic directionally solidified ceramic prepared by laser floating zone. Journal of the European Ceramic Society, 2014, 34(12): 3051. |
[41] | SU H J, ZHANG J, TIAN J J, et al. Preparation and characterization of Al2O3/Y3Al5O12/ZrO2 ternary hypoeutectic in situ composites by laser rapid solidification. Journal of Applied Physics, 2008, 104(2): 023511. |
[42] | LIU H F, SU H J, SHEN Z L, et al. One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 2021, 41(6): 3547. |
[43] | FAN Z Q, YIN Y, TAN Q Y, et al. Unveiling solidification mode transition and crystallographic characteristics in laser 3D-printed Al2O3-ZrO2 eutectic ceramics. Scripta Materialia, 2022, 210: 114433. |
[44] | WANG X, ZHONG Y J, SUN Q, et al. Crystallography and interfacial structure in a directionally solidified Al2O3/Y3Al5O12/ ZrO2 eutectic crystal. Scripta Materialia, 2018, 145: 23. |
[45] | LARREA A, FUENTE G F, MERINO R I, et al. ZrO2-Al2O3 eutectic plates produced by laser zone melting. Journal of the European Ceramic Society, 2002, 22(2): 191. |
[46] | WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. High- temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. Journal of Materials Science, 1998, 33: 1217. |
[47] | HUANG Y F, WU D J, ZHAO D K, et al. Process optimization of melt growth alumina/aluminum titanate composites directed energy deposition: effects of scanning speed. Additive Manufacturing, 2020, 35: 101210. |
[48] | ZHAO D K, WU D J, NIU F Y, et al. Heat treatment of melt- grown alumina ceramics with trace glass fabricated by laser directed energy deposition. Materials Characterization, 2023, 196: 112639. |
[49] | WU D J, SAN J D, NIU F Y, et al. Directed laser deposition of Al2O3-ZrO2 melt-grown composite ceramics with multiple composition ratios. Journal of Materials Science, 2020, 55: 6794. |
[50] | HU Y B, WANG H, CONG W L, et al. Directed energy deposition of zirconia-toughened alumina ceramic: novel microstructure formation and mechanical performance. Journal of Manufacturing Science and Engineering, 2019, 142: 021005. |
[51] | WU D J, NIU F Y, HUANG Y F, et al. Effects of TiO2 doping on microstructure and properties of directed laser deposition alumina/ aluminum titanate composites. Virtual and Physical Prototyping, 2019, 14(4): 371. |
[52] | ZHAO D K, WU D J, SHI J, et al. Microstructure and mechanical properties of melt-grown alumina-mullite/glass composites fabricated by directed laser deposition. Journal of Advanced Ceramics, 2022, 11(1): 75. |
[53] | PAPPAS J M, DONG X Y. Effects of processing conditions on laser direct deposited alumina ceramics. ASME 2020 15th International Manufacturing Science and Engineering Conference, New York, 2020: 8260. |
[54] | LIU H F, SU H J, SHEN Z L, et al. Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting. Ceramics International, 2019, 45(14): 17252. |
[55] | FAN Z Q, LU M Y, HUANG H. Selective laser melting of alumina: a single track study. Ceramics International, 2018, 44(8): 9484. |
[56] | WU D J, ZHAO D K, HUANG Y F, et al. Shaping quality, microstructure, and mechanical properties of melt-grown mullite ceramics by directed laser deposition. Journal of Alloys and Compounds, 2021, 871: 159609. |
[57] | YAN S, WU D J, NIU F Y, et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping. Ceramics International, 2017, 43(17): 15905. |
[58] | YAN S, WU D J, NIU F Y, et al. Effect of ultrasonic power on forming quality of nano-sized Al2O3-ZrO2 eutectic ceramic via laser engineered net shaping (LENS). Ceramics International, 2018, 44(1): 1120. |
[59] | MOHANTY P, MAHAPATRA R, PADHI P, et al. Ultrasonic cavitation: an approach to synthesize uniformly dispersed metal matrix nanocomposites—a review. Nano-Structures & Nano-Objects, 2020, 23: 100475. |
[60] | WU D J, LIU H C, LU F, et al. Al2O3-YAG eutectic ceramic prepared by laser additive manufacturing with water-cooled substrate. Ceramics International, 2019, 45(3): 4119. |
[61] | YAN S, WU D J, HUANG Y F, et al. C fiber toughening Al2O3- ZrO2 eutectic via ultrasonic-assisted directed laser deposition. Materials Letters, 2019, 235: 228. |
[62] | WU D J, LU F, ZHAO D K, et al. Effect of doping SiC particles on cracks and pores of Al2O3-ZrO2 eutectic ceramics fabricated by directed laser deposition. Journal of Materials Science, 2019, 54: 9321. |
[63] | YAN S, WU D J, MA G Y, et al. Formation mechanism and process optimization of nano Al2O3-ZrO2 eutectic ceramic via laser engineered net shaping (LENS). Ceramics International, 2017, 43(17): 14742. |
[64] | CHEN X T, GUO W, WANG H M, et al. Highly transparent cubic γ-Al2O3 ceramic prepared by high-pressure sintering of home- made nanopowders. Journal of the European Ceramic Society, 2023, 43(9): 4219. |
[65] | NIU F Y, WU D J, LU F, et al. Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping. Ceramics International, 2018, 44(12): 14303. |
[66] | LIU X D, YUAN Y C, WANG R J, et al. Pressureless sintering behaviour of Al2O3/ZrO2 amorphous/solid solution powder with ultra-fine ZrO2 nanoparticle precipitation. Ceramics International, 2023, 49(24): 39886. |
[67] | PASTOR J, POZA P, LLORCA J, et al. Mechanical properties of directionally solidified Al2O3-ZrO2(Y2O3) eutectics. Materials Science and Engineering: A, 2001, 308(1/2): 241. |
[68] | WILKES J, HAGEDORN Y C, WILHELM M, et al. Additive manufacturing of ZrO2-Al2O3ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51. |
[69] | WANG S H, CHU Z F, LIU J C. Microstructure and mechanical properties of directionally solidified Al2O3/GdAlO3 eutectic ceramic prepared with horizontal high-frequency zone melting. Ceramics International, 2019, 45(8): 10279. |
[70] | SHEN Z L, SU H J, LIU Y, et al. Laser additive manufacturing of melt-grown Al2O3/GdAlO3 eutectic ceramic composite: powder designs and crack analysis with thermo-mechanical simulation. Journal of the European Ceramic Society, 2022, 42(14): 6583. |
[71] | MEDVEDOVSKI E. Alumina-mullite ceramics for structural applications. Ceramics International, 2006, 32: 369. |
[72] | SU H J, ZHANG J, CUI C J, et al. Rapid solidification behaviour of Al2O3/Y3Al5O12 (YAG) binary eutectic ceramic in situ composites. Materials Science and Engineering: A, 2008, 479(1/2): 380. |
[73] | NIU F Y, WU D J, MA G Y, et al. Rapid fabrication of eutectic ceramic structures by laser engineered net shaping. Procedia CIRP, 2016, 42: 91. |
[74] | HENNICHE A, OUYANG J, MA Y, et al. Microstructure, mechanical and thermo-physical properties of hot-pressed Al2O3- GdAlO3-ZrO2 ceramics with eutectic composition. Progress in Natural Science: Materials International, 2017, 27(4): 491. |
[75] | MAZEROLLES L, PIQUET N, TRICHET M, et al. New microstructures in ceramic materials from the melt for high temperature applications. Aerospace Science and Technology, 2008, 12(7): 499. |
[76] | SU H J, ZHANG J, YU J Z, et al. Rapid solidification and fracture behavior of ternary metastable eutectic Al2O3/YAG/YSZ in situ composite ceramic. Materials Science and Engineering: A, 2011, 528(4/5): 1967. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[6] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[7] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[8] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[9] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[10] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[11] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[12] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[13] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[14] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[15] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||