Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (6): 571-578.DOI: 10.3724/SP.J.1077.2011.00571
• Review • Previous Articles Next Articles
JIN Zhi-Liang, LV Gong-Xuan
Received:
2010-09-20
Revised:
2010-12-01
Published:
2011-06-20
Online:
2011-06-07
Supported by:
973Program (2007CB613305, 2009CB220003, 2009AA05Z117); Chinese Academy of Sciences Solar Programme (KGCX2-YW-390-1, KGCX2-YW-390-3)
CLC Number:
JIN Zhi-Liang, LV Gong-Xuan. Modification of TiO2 Photocatalysts with Metalloid Anions and the Applicaton in Salt Solution System[J]. Journal of Inorganic Materials, 2011, 26(6): 571-578.
Add to citation manager EndNote|Ris|BibTeX
[1] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96.[2] Kudo A, Kato H, Tsuji I. Strategies for the development of visible- light-driven photocatalysts for water splitting. Chemistry Letters, 2004, 33(12): 1534-1539.[3] Moon S C, Mametsuka H, Tabata S, et al. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 2000, 58(2/3): 125-132.[4] Zhao W, Ma W H, Zhao J C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782-4783.[5] Jin Z L, Lu G X. Efficiently photocatalytic hydrogen evolution over Ptx-TiO2-yBy catalysts in a ternary system of K+, Mg2+/B4O72--H2O at 25℃. Energy & Fuels, 2005, 19(3): 1126-1132.[6] Su Y L, Han S, Zhang X W, et al. Preparation and visible- light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Materials Chemistry and Physics, 2008, 110(2/3): 239-246.[7] Finazzi E, Di Valentin C, Pacchioni G. Boron-doped anatase TiO2: pure and hybrid DFT calculations. Journal of Physical Chemistry C, 2009, 113(1): 220-228.[8] Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental, 2001, 32(4): 215-227.[9] Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243-2245.[10] Sakthivel S, Kich H. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie-International Edition, 2003, 42(40): 4908-4911.[11] Dong F, Wang H Q, Wu Z B. One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(38): 16717-16723.[12] Mai L X, Huang C M, Wang D W, et al. Effect of C doping on the structural and optical properties of Sol-Gel TiO2 thin films. Applied Surface Science, 2009, 255(22): 9285-9289.[13] Wang H Q, Wu Z B, Liu Y A. Simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. Journal of Physical Chemistry C, 2009, 113(30): 13317-13324.[14] Janus M, Tryba B, Inagaki M, et al. New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Applied Catalysis B: Environmental, 2004, 52(1): 61-67.[15] Colòn G, Hidalgo M C, Macías M, et al. Enhancement of TiO2/C photocatalytic activity by sulfate promotion. Applied Catalysis B: General, 2004, 259(2): 235-243.[16] Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon, 2004, 42(5/6): 1147-1151.[17] Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters, 1986, 123(1/2): 126-128.[18] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium Oxides. Science, 2001, 293(5528): 269-271.[19] Li L, Liu C Y. Facile synthesis of anatase-brookite mixed-phase N-doped TiO2 nanoparticles with high visible-light photocatalytic activity. European Journal of Inorganic Chemistry, 2009, 25: 3727-3733.[20] Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials, 2009, 168(1): 253-261.[21] Jayakumar O D, Sasikala R, Betty C A, et al. A rapid method for the synthesis of nitrogen doped TiO2 nanoparticles for photocatalytic hydrogen generation. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4663-4667.[22] Yu A M, Wu G J, Zhang F X, et al. Synthesis and characterization of N-doped TiO2 nanowires with visible light response. Catalysis Letters, 2009, 129(3/4): 507-512.[23] Diwald O, Thompson T L, Yates Jr J T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. Journal of Physical Chemistry B, 2004, 108(1): 52-57.[24] Premkumar J. Development of super-hydrophilicity on nitrogen- doped TiO2 thin film surface by photoelectrochemical method under visible light. Chemical Materials, 2004, 16(21): 3980-3981.[25] Gole J L, Stout J D. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. Journal of Physical Chemistry B, 2004, 108(4): 1230-1240.[26] Chen X B, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. Journal of Physical Chemistry B, 2004, 108(40): 15446-15449.[27] Hattori A, Shimoda K, Tada H, et al. Photoreactivity of Sol-Gel TiO2 films formed on soda-lime glass substrates: effect of SiO2 underlayer containing fluorine. Langmuir, 1999, 15(16): 5422-5425.[28] Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14(10): 3808-3816.[29] Yu C, Yu J C, Chan M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. Journal of Solid State Chemistry, 2009, 182(5): 1061-1069.[30] Wu G, Chen A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 195(1): 47-53.[31] Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. Journal of Fluorine Chemistry, 2005, 126(1): 69-77.[32] Lv Y Y, Yu L S, Huang H Y, et al. Preparation of F-doped titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4. Applied Surface Science, 2009, 255(23): 9548-9552.[33] Liu G, Chen Z G, Dong C L, et al. Visible light photocatalyst: Iodine- doped mesoporous titania with a bicrystalline framework. Journal of Physical Chemistry B, 2006,110(42): 20823-20828.[34] Yang K S, Dai Y, Huang B B, et al. Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chemistry of Materials, 2008, 20(20): 6528-6534.[35] Wu X W, Wu D J, Liu X. J. Optical investigation on sulfur-doping effects in titanium dioxide nanoparticles. Applied Physics A-Materials Science & Processing, 2009, 97(1): 243-248.[36] Hamadanian M, Reisi-Vanani A, Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Material Chemical Physics, 2009, 116(2/3): 376-382.[37] Lei Z B, You W S, Li C, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal methed. Chemical Communications, 2003, 17: 2142-2143.[38] Ishikawa A, Takata T, Domen K, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (650 nm). Journal of the American Chemical Society, 2002, 124(45): 13547-13553.[39] Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solution under visible light irradiation. Chemical Communications, 2002(17): 1958-1959.[40] Yu H F. Photocatalytic abilities of gel-derived P-doped TiO2. Journal of Physics and Chemistry of Solids, 2007, 68(4): 600-607.[41] Yu H F. Phase development and photocatalytic ability of gel-derived P-doped TiO2. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||