Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 591-608.DOI: 10.15541/jim20230562
Special Issue: 【结构材料】超高温结构陶瓷(202409); 【结构材料】高熵陶瓷(202409)
• REVIEW • Previous Articles Next Articles
CAI Feiyan1,2,3(), NI Dewei1,2,4(
), DONG Shaoming1,2(
)
Received:
2023-12-06
Revised:
2024-01-19
Published:
2024-06-20
Online:
2024-01-22
Contact:
NI Dewei, professor. E-mail: deweini@mail.sic.ac.cn;About author:
CAI Feiyan (1998-), female, PhD candidate. E-mail: caifeiyan19@mails.ucas.ac.cn
Supported by:
CLC Number:
CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 591-608.
Composition | EFA/(eV/atom)-1 | Phase |
---|---|---|
(VNbTaMoW)C | 125 | Single-phase |
(TiZrHfNbTa)C | 100 | Single-phase |
(TiHfVNbTa)C | 100 | Single-phase |
(TiVNbTaW)C | 77 | Single-phase |
(TiHfNbTaW)C | 67 | Single-phase |
(TiZrHfTaW)C | 50 | Single-phase |
(ZrHfTaMoW)C | 45 | Multi-phase |
(TiZrHfMoW)C | 38 | Multi-phase |
(ZrHfVMoW)C | 37 | Multi-phase |
Table 1 EFA values of 9 experimentally validated HECs[31]
Composition | EFA/(eV/atom)-1 | Phase |
---|---|---|
(VNbTaMoW)C | 125 | Single-phase |
(TiZrHfNbTa)C | 100 | Single-phase |
(TiHfVNbTa)C | 100 | Single-phase |
(TiVNbTaW)C | 77 | Single-phase |
(TiHfNbTaW)C | 67 | Single-phase |
(TiZrHfTaW)C | 50 | Single-phase |
(ZrHfTaMoW)C | 45 | Multi-phase |
(TiZrHfMoW)C | 38 | Multi-phase |
(ZrHfVMoW)C | 37 | Multi-phase |
Synthesizing method | Composition (lattice parameter) | Starting materials | Synthesizing conditions | Grain size | Oxygen content/ % (in mass) |
---|---|---|---|---|---|
Mechanical alloying[ | (TiZrHfVNb)C (0.4496 nm) (TiZrHfVTa)C (0.4495 nm) (TiZrHfNbTa)C (0.4526 nm) (TiZrVNbTa)C (0.4440 nm) (TiHfVNbTa)C (0.4425 nm) (ZrHfVNbTa)C (0.4493 nm) | Transition metals + Graphite powder | 50-70 h | 2.5 nm 2.4 nm 3.3 nm 4.0 nm 3.2 nm 3.0 nm | - |
Carbothermal reduction method[ | (TiZrHfNbTa)C (0.4524 nm) | Metal oxides + Graphite powder or carbon black | Carbothermal reduction (CTR) 1600 ℃, 1 h; Solid solution (SS) 2000 ℃, 1.5 h | 550 nm | 0.2 |
(TiZrHfNbTa)C (0.4503 nm) | 2200 ℃, 1 h | 0.5-2 μm | - | ||
Molten salt synthesis[ | (TiVNbTa)C (0.4468 nm) | Metal carbides + Molten salt media KCl | 1300 ℃, 1 h | 50-110 nm | - |
Liquid precursors method[ | (TiZrHfNbTa)C (-) | Metal chlorides + Furfuryl alcohol | CTR 1400 ℃, 1 h; SS 2000 ℃, 1 h | 132 nm | 0.22 |
(TiZrHfTa)C (0.4529 nm) | Equiatomic metal containing monomers + Allyl-functional novolac resin | 1800 ℃, 2 h | ~100 nm | - | |
Direct synthetic method[ | (TiZrHfNbTa)C (0.4508 nm) | Metal carbides | 1950 ℃, 5 min (SPS) | ~2 μm | - |
Table 2 Typical HECs synthesis methods and characteristics
Synthesizing method | Composition (lattice parameter) | Starting materials | Synthesizing conditions | Grain size | Oxygen content/ % (in mass) |
---|---|---|---|---|---|
Mechanical alloying[ | (TiZrHfVNb)C (0.4496 nm) (TiZrHfVTa)C (0.4495 nm) (TiZrHfNbTa)C (0.4526 nm) (TiZrVNbTa)C (0.4440 nm) (TiHfVNbTa)C (0.4425 nm) (ZrHfVNbTa)C (0.4493 nm) | Transition metals + Graphite powder | 50-70 h | 2.5 nm 2.4 nm 3.3 nm 4.0 nm 3.2 nm 3.0 nm | - |
Carbothermal reduction method[ | (TiZrHfNbTa)C (0.4524 nm) | Metal oxides + Graphite powder or carbon black | Carbothermal reduction (CTR) 1600 ℃, 1 h; Solid solution (SS) 2000 ℃, 1.5 h | 550 nm | 0.2 |
(TiZrHfNbTa)C (0.4503 nm) | 2200 ℃, 1 h | 0.5-2 μm | - | ||
Molten salt synthesis[ | (TiVNbTa)C (0.4468 nm) | Metal carbides + Molten salt media KCl | 1300 ℃, 1 h | 50-110 nm | - |
Liquid precursors method[ | (TiZrHfNbTa)C (-) | Metal chlorides + Furfuryl alcohol | CTR 1400 ℃, 1 h; SS 2000 ℃, 1 h | 132 nm | 0.22 |
(TiZrHfTa)C (0.4529 nm) | Equiatomic metal containing monomers + Allyl-functional novolac resin | 1800 ℃, 2 h | ~100 nm | - | |
Direct synthetic method[ | (TiZrHfNbTa)C (0.4508 nm) | Metal carbides | 1950 ℃, 5 min (SPS) | ~2 μm | - |
Fig. 1 Morphologies of HECs powders synthesized by several typical methods (a) Liquid precursor method[37]; (b) Molten salt synthesis[36]; (c) Carbothermal reduction method[35]; (d) Direct synthesis method[39]
Fig. 2 SEM images and corresponding EDS element mappings of (TiZrNbTaW)C ceramics prepared by three typical processes[67] (a, d) Using metallic powders and graphite as raw materials (HEC-M); (b, e) Using metal carbides as raw materials (HEC-C); (c, f) Using metal oxides and graphite as raw materials (HEC-O)
Fig. 9 Elemental enrichment in the ablation transition region of (TiZrHfNbTa)C0.8N0.2[129] (a, b) Highly dense oxide scale embedded in oval Hf/Zr-rich grains; (c) Initial oval grains in the areas away from ablation surface
Fig. 10 Schematic diagram of the ablation mechanism of (TiZrHfNbTa)C during oxyacetylene ablation flame (2000 ℃)[56] (a) Ablation center; (b) Ablation edge
Element | Ti | Zr | Hf | Nb | Ta |
---|---|---|---|---|---|
Ti | TiO2 | HfTiO4[ | |||
Zr | ZrTiO4[ | ZrO2 | (Hf, Zr)O2[ | ||
Hf | HfO2 | ||||
V | ZrV2O7 | VNb9O25[ | VTa9O25[ | ||
Nb | Nb2TiO7[ Nb10Ti2O29[ Nb6Ti2O19[ TiNb6O17[ | Zr6Nb2O17[ | Hf6Nb2O17[ | Nb2O5 | |
Ta | TiTa2O7[ | ZrTa6O17[ Zr6Ta2O19[ | Hf6Ta2O17[ | Nb4Ta2O15[ | Ta2O5 |
Mo | |||||
W | ZrW2O8[ | HfW2O8[ |
Table 4 Complex oxides that could form in the HECs systems based on a review of available phase diagrams
Element | Ti | Zr | Hf | Nb | Ta |
---|---|---|---|---|---|
Ti | TiO2 | HfTiO4[ | |||
Zr | ZrTiO4[ | ZrO2 | (Hf, Zr)O2[ | ||
Hf | HfO2 | ||||
V | ZrV2O7 | VNb9O25[ | VTa9O25[ | ||
Nb | Nb2TiO7[ Nb10Ti2O29[ Nb6Ti2O19[ TiNb6O17[ | Zr6Nb2O17[ | Hf6Nb2O17[ | Nb2O5 | |
Ta | TiTa2O7[ | ZrTa6O17[ Zr6Ta2O19[ | Hf6Ta2O17[ | Nb4Ta2O15[ | Ta2O5 |
Mo | |||||
W | ZrW2O8[ | HfW2O8[ |
[1] | CHEN B W, NI D W, BAO W C, et al. Engineering Cf/ZrB2- SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance. Adv. Sci., 2023, 10: 202304254. |
[2] | BINNER J, PORTER M, BAKER B, et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review. Int. Mater. Rev., 2019, 65(7):389. |
[3] | NI D W, CHENG Y, ZHANG J P, et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram., 2022, 11(1):1. |
[4] | OSES C, TOHER C, CURTAROLO S. High-entropy ceramics. Nat. Rev. Mater., 2020, 5(4):295. |
[5] | WYATT B C, NEMANI S K, HILMAS G E, et al. Ultra-high temperature ceramics for extreme environments. Nat. Rev. Mater., 2023, https://doi.org/10.1038/s41578-023-00619-0. |
[6] | ZENG Y, WANG D N, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 ℃. Nat. Commun., 2017, 8: 15836. |
[7] |
WANG H X, WANG Y G, LIU Q M. Research progress of high entropy transition metal carbide ceramics. J. Inorg. Mater., 2021, 36(4):355.
DOI |
[8] | XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram., 2021, 10(3):385. |
[9] | WRIGHT A J, LUO J. A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. J. Mater. Sci., 2020, 55(23):9812. |
[10] | KAUFMANN K, MARYANOVSKY D, MELLOR W M, et al. Discovery of high-entropy ceramics via machine learning. npj Comput. Mater., 2020, 6: 42. |
[11] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep., 2016, 6: 37946. |
[12] | ZHANG R Z, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A, 2019, 7(39):22148. |
[13] | 顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷研究进展. 中国材料进展, 2019, 38(9):855. |
[14] | CHEN L, WANG K, SU W T, et al. Research progress of transition metal non-oxide high-entropy ceramics. J. Inorg. Mater., 2019, 35(7):748. |
[15] | WANG Y C. Processing and properties of high entropy carbides. Adv. Appl. Ceram., 2022, 121(2):57. |
[16] | CAI F Y, NI D W, CHEN B W, et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis. J. Eur. Ceram. Soc., 2021, 41(12):5863. |
[17] | YU D, YIN J, ZHANG B H, et al. Recent development of high- entropy transitional carbides: a review. J. Ceram. Soc. Jpn., 2020, 128(7):329. |
[18] | CASTLE E, CSANADI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep., 2018, 8: 8609. |
[19] | PENG C, GAO X, WANG M Z, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl. Phys. Lett., 2019, 114(1):011905. |
[20] | WANG Y C, CSANADI T, ZHANG H F, et al. Enhanced hardness in high-entropy carbides through atomic randomness. Adv. Theory Simul., 2020, 3(9):2000111. |
[21] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5):299. |
[22] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A Struct. Mater., 2004, 375-377: 213. |
[23] | ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nat. Commun., 2015, 6: 8485. |
[24] | WANG Y J, ZHANG G J. Non-order is the new order: high- entropy ceramics. J. Inorg. Mater., 2021, 36(4):337. |
[25] | ZHANG W R, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys. Sci. China-Mater., 2018, 61(1):2. |
[26] | MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122: 448. |
[27] | HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater., 2019, 166: 271. |
[28] | YEH J W. Recent progress in high-entropy alloys. Ann. Chim-Sci. Mat., 2006, 31(6):633. |
[29] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Mater. Res. Lett., 2014, 2(3):107. |
[30] | YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic. J. Am. Ceram. Soc., 2019, 102(7):4344. |
[31] | SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun., 2018, 9: 4980. |
[32] | CHICARDI E, GARCÍA-GARRIDO C, HERNÁNDEZ-SAZ J, et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceram. Int., 2020, 46(13):21421. |
[33] | CHICARDI E, GARCíA-GARRIDO C, GOTOR F J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int., 2019, 45(17):21858. |
[34] | FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Synthesis of single-phase high-entropy carbide powders. Scr. Mater., 2019, 162: 90. |
[35] |
YE B L, NING S S, LIU D, et al. One-step synthesis of coral-like high-entropy metal carbide powders. J. Am. Ceram. Soc., 2019, 102(10):6372.
DOI |
[36] | NING S S, WEN T Q, YE B L, et al. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J. Am. Ceram. Soc., 2019, 103(3):2244. |
[37] | LI F, LU Y, WANG X G, et al. Liquid precursor-derived high- entropy carbide nanopowders. Ceram. Int., 2019, 45(17):22437. |
[38] | ZHAO T, LIU W, HAN W J, et al. Synthesis of high entropy carbide nano powders via liquid polymer precursor route. J. Inorg. Mater., 2021, 36(4):393. |
[39] | ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int., 2018, 44(17):22014. |
[40] | SEDEGOV A, VOROTILO S, TSYBULIN V, et al. Synthesis and study of high-entropy ceramics based on the carbides of refractory metals. IOP Conf. Ser. Mater. Sci. Eng., 2019, 558(1):012043. |
[41] | DU B, LIU H H, CHU Y H. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. J. Am. Ceram. Soc., 2020, 103(8):4063. |
[42] | ŠOLCOVÁ P, NIŽŇANSKÝ M, SCHULZ J, et al. Preparation of high-entropy (Ti, Zr, Hf, Ta, Nb) carbide powder via solution chemistry. Inorg. Chem., 2021, 60(11):7617. |
[43] | SUN Y N, CHEN F H, QIU W F, et al. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route. J. Am. Ceram. Soc., 2020, 103(11):6081. |
[44] | CSANÁDI T, VOJTKO M, DANKHÁZI Z, et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. J. Eur. Ceram. Soc., 2020, 40(14):4774. |
[45] | ZHANG H Z, AKHTAR F. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy, 2019, 21(5):474. |
[46] | DEMIRSKYI D, SUZUKI T S, YOSHIMI K, et al. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders. Open Ceram., 2020, 2: 100015. |
[47] | WANG F, YAN X L, WANG T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater., 2020, 195: 739. |
[48] | WANG F, ZHANG X, YAN X L, et al. The effect of submicron grain size on thermal stability and mechanical properties of high- entropy carbide ceramics. J. Am. Ceram. Soc., 2020, 103(8):4463. |
[49] | LIU D Q, ZHANG A J, JIA J G, et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis. J. Eur. Ceram. Soc., 2020, 40(8):2746. |
[50] | LU K, LIU J X, WEI X F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. J. Eur. Ceram. Soc., 2020, 40(5): 1839. |
[51] | DUSZA J, CSANáDI T, MEDVEĎ D, et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. J. Eur. Ceram. Soc., 2021, 41(11):5417. |
[52] | YE B L, WEN T Q, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Mater., 2019, 170: 15. |
[53] |
FENG L, FAHRENHOLTZ W G, HILMAS G E. Low-temperature sintering of single-phase, high-entropy carbide ceramics. J. Am. Ceram. Soc., 2019, 102(12):7217.
DOI |
[54] | FENG L, CHEN W T, FAHRENHOLTZ W G, et al. Strength of single-phase high-entropy carbide ceramics up to 2300 ℃. J. Am. Ceram. Soc., 2020, 104(1):419. |
[55] | WANG K, CHEN L, XU C G, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J. Mater. Sci. Technol., 2020, 39: 99. |
[56] | NI N, DING Q, SHI Y C, et al. Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000 ℃. J. Eur. Ceram. Soc., 2023, 43(6):2306. |
[57] | LU W Y, CHEN L, ZHANG W, et al. Single-phase formation and mechanical properties of (TiZrNbTaMo)C high-entropy ceramics: first-principles prediction and experimental study. J. Eur. Ceram. Soc., 2022, 42(5): 2021. |
[58] | PÖTSCHKE J, DAHAL M, HERRMANN M, et al. Preparation of high-entropy carbides by different sintering techniques. J. Mater. Sci., 2021, 56(19):11237. |
[59] | YU D, YIN J, ZHANG B H, et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. J. Eur. Ceram. Soc., 2021, 41(6):3823. |
[60] | CHEN L, ZHANG W, TAN Y Q, et al. Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering. J. Eur. Ceram. Soc., 2021, 41(16):60. |
[61] | BRAIC M, BRAIC V, BALACEANU M, et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf. Coat. Technol., 2010, 204(12/13): 2010. |
[62] | BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol., 2012, 211: 117. |
[63] | BRAIC V, PARAU A C, PANA I, et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings. Surf. Coat. Technol., 2014, 258: 996. |
[64] | YAN X L, CONSTANTIN L, LU Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc., 2018, 101(10):4486. |
[65] | DUSZA J, ŠVEC P, GIRMAN V, et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J. Eur. Ceram. Soc., 2018, 38(12):4303. |
[66] | WEI X F, QIN Y, LIU J X, et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J. Eur. Ceram. Soc., 2020, 40(4):935. |
[67] | WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc., 2019, 39(10):2989. |
[68] | GILD J, KAUFMANN K, VECCHIO K, et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scr. Mater., 2019, 170: 106. |
[69] | ZHANG W, CHEN L, XU C G, et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering. J. Mater. Sci. Technol., 2021, 72: 23. |
[70] | YU D, ZHANG B H, YIN J, et al. Densifying (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics by two-step pressureless sintering. J. Am. Ceram. Soc., 2022, 105(1):76. |
[71] | MALINOVSKIS P, FRITZE S, RIEKEHR L, et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des., 2018, 149: 51. |
[72] | MUKHERJEE A, VLADESCU A, TITORENCU I, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLOS ONE, 2016, 11(8):e0161151. |
[73] | BRAIC V, BALACEANU M, BRAIC M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater., 2012, 10: 197. |
[74] | BRAIC M, BALACEANU M, VLADESCU A, et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl. Surf. Sci., 2013, 284: 671. |
[75] | LIANG S C, TSAI D C, CHANG Z C, et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci., 2011, 258(1):399. |
[76] | PEI Y T, CHEN C Q, SHAHA K P, et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering. Acta Mater., 2008, 56(4):696. |
[77] | ROST C M, BORMAN T, HOSSAIN M D, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater., 2020, 196: 231. |
[78] | GORBAN’ V F, ANDREYEV A A, KARTMAZOV G N, et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. J. Phys. Chem., 2017, 39(3):166. |
[79] | KAO W H, SU Y L, HORNG J H, et al. Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Mater. Chem. Phys., 2021, 268: 124741. |
[80] | JHONG Y S, HUANG C W, LIN S J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr) Cx coatings. Mater. Chem. Phys., 2018, 210: 348. |
[81] | LIN S Y, CHANG S Y, HUANG Y C, et al. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surf. Coat. Technol., 2012, 206(24):5096. |
[82] | XU W J, JIA B S, LIU X H, et al. Structural evolution and mechanical properties of multi-element (TiCrZrVNb)C high entropy ceramics films by multi-arc ion plating. Ceram. Int., 2022, 48(13):19191. |
[83] | WANG J, ZHANG H, YU X, et al. Insight into the structure and tribological and corrosion performance of high entropy (CrNbSiTiZr) C films: first-principles and experimental study. Surf. Coat. Technol., 2021, 421: 127468. |
[84] | LI J C, ZHANG Y L, ZHAO Y X, et al. A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 ℃. Compos. B Eng., 2023, 251: 110467. |
[85] | CAI F Y, NI D W, CHEN B W, et al. Efficient fabrication and properties of 2D Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via slurry infiltration lamination combined with precursor infiltration and pyrolysis. J. Eur. Ceram. Soc., 2023, 43(16):7403. |
[86] | ZHANG L, WANG W Q, ZHOU N P, et al. Low temperature fabrication of Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic matrix composite by slurry coating and laminating combined with precursor infiltration and pyrolysis. J. Eur. Ceram. Soc., 2022, 42(7):3099. |
[87] | GUO W J, HU J, FANG W, et al. A novel strategy for rapid fabrication of continuous carbon fiber reinforced (TiZrHfNbTa)C high-entropy ceramic composites: high-entropy alloy in-situ reactive melt infiltration. J. Eur. Ceram. Soc., 2023, 43(6):2295. |
[88] | BAO W C, WANG X G, DING H J, et al. High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures. Scr. Mater., 2020, 183: 33. |
[89] | CHEN L, LI Y B, CHEN K, et al. Synthesis and characterization of medium-/high-entropy M2SnC (M = Ti/V/Nb/Zr/Hf) MAX phases. Small Struct., 2023, 4: 2200161. |
[90] | NEMANI S K, ZHANG B, WYATT B C, et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano, 2021, 15(8):12815. |
[91] | CHEN L, LI Y B, LIANG K, et al. Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Methods, 2023, 7(8):2300054 |
[92] | DU Z G, WU C, CHEN Y C, et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater., 2021, 33(39):2101473. |
[93] | LIU J B, XIONG J, GUO Z X, et al. Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering. Metall. Mater. Trans. A, 2020, 51(12):6706. |
[94] | WANG Y C, YU D, YIN J, et al. Ablation behavior of (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide and (Hf-Ta-Zr-Nb-Ti)C- xSiC composites. J. Am. Ceram. Soc., 2022, 105(10):6395. |
[95] | WANG H X, WANG S Y, CAO Y J, et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 ℃. J. Mater. Sci. Technol., 2021, 60: 147. |
[96] | NAUGHTON-DUSZOVÁ A, ŠVEC P, KOVALČÍKOVÁ A, et al. On the phase and grain boundaries in dual phase carbide/boride ceramics from micro to atomic level. J. Eur. Ceram. Soc., 2023, 43(15):6765. |
[97] | QIN M D, GILD J, HU C Z, et al. Dual-phase high-entropy ultra- high temperature ceramics. J. Eur. Ceram. Soc., 2020, 40(15):5037. |
[98] | HUO S J, CHEN L, LIU X R, et al. Reactive sintering of dual- phase high-entropy ceramics with superior mechanical properties. J. Mater. Sci. Technol., 2022, 129: 223. |
[99] | QIN M D, VEGA H D, ZHANG D W, et al. 21-Component compositionally complex ceramics: discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition. J. Adv. Ceram., 2022, 11(4):641. |
[100] | WANG Y C, WANG X C, LI S, et al. Improved oxidation resistance of (Zr-Nb-Hf-Ta)(C, N) high entropy carbonitrides. Corros. Sci., 2023, 225: 111583. |
[101] | DIPPO O F, MESGARZADEH N, HARRINGTON T J, et al. Bulk high-entropy nitrides and carbonitrides. Sci. Rep., 2020, 10: 21288. |
[102] | BALASUBRAMANIAN K, KHARE S V, GALL D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater., 2018, 152: 175. |
[103] | MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S, et al. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceram. Int., 2020, 46(11):19008. |
[104] | 王达飞, 刘宁, 张晓玲. 四元高熵碳化物陶瓷的组织和性能研究. 热处理, 2020, 35(2):8. |
[105] | LIU D Q, ZHANG A J, JIA J G, et al. Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C. Mater. Sci. Eng. A Struct. Mater., 2021, 804: 140520. |
[106] | YU H, BAHADORI M, THOMPSON G B, et al. Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides. J. Mater. Sci., 2017, 52(11):6235. |
[107] | KIANI S, YANG J M, KODAMBAKA S, et al. Nanomechanics of refractory transition-metal carbides: a path to discovering plasticity in hard ceramics. J. Am. Ceram. Soc., 2015, 98(8):2313. |
[108] | CSANáDI T, CASTLE E, REECE M J, et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep., 2019, 9: 10200. |
[109] | HAN X X, GIRMAN V, SEDLAK R, et al. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc., 2020, 40(7):2709. |
[110] | CHENG Z L, LU W Y, CHEN L, et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures. J. Eur. Ceram. Soc., 2022, 42(13):5280. |
[111] | KÖRMANN F, IKEDA Y, GRABOWSKI B, et al. Phonon broadening in high entropy alloys. npj Comput. Mater., 2017, 3: 36. |
[112] | ZHANG Y W, STOCKS G M, JIN K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun., 2015, 6: 8736. |
[113] | CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol., 2019, 35(8):1700. |
[114] | GASPARRINI C, RANA D S, LE BRUN N, et al. On the stoichiometry of zirconium carbide. Sci. Rep., 2020, 10: 6347. |
[115] | WEI X F, LIU J X, BAO W C, et al. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J. Eur. Ceram. Soc., 2021, 41(9):4747. |
[116] | GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. J. Eur. Ceram. Soc., 2018, 38(10):3578. |
[117] | BACKMAN L, OPILA E J. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials. J. Eur. Ceram. Soc., 2019, 39(5):1796. |
[118] | BACKMAN L, GILD J, LUO J, et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater., 2020, 197: 20. |
[119] | BACKMAN L, GILD J, LUO J, et al. Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics. Acta Mater., 2020, 197: 81. |
[120] | YE B L, WEN T Q, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corros. Sci., 2019, 153: 327. |
[121] | YE B L, WEN T Q, CHU Y H. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. J. Am. Ceram. Soc., 2019, 103(1):500. |
[122] | WANG Y C, ZHANG R Z, ZHANG B H, et al. The role of multi- elements and interlayer on the oxidation behaviour of (Hf-Ta- Zr-Nb)C high entropy ceramics. Corros. Sci., 2020, 176: 109019. |
[123] | WANG H X, HAN X, LIU W, et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400-1600 °C. Ceram. Int., 2021, 47(8):10848. |
[124] | WANG H X, CAO Y J, LIU W, et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature. Ceram. Int., 2020, 46(8):11160. |
[125] | TAN Y Q, CHEN C, LI S G, et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor. J. Alloys Compd., 2020, 816: 152523. |
[126] | WANG Y C, REECE M J. Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders. Scr. Mater., 2021, 193: 86. |
[127] | MELLOR W M, KAUFMANN K, DIPPO O F, et al. Development of ultrahigh-entropy ceramics with tailored oxidation behavior. J. Eur. Ceram. Soc., 2021, 41(12):5791. |
[128] | WANG Y C, CSANADI T, ZHANG H F, et al. Synthesis, microstructure, and mechanical properties of novel high entropy carbonitrides. Acta Mater., 2022, 231: 117887. |
[129] | PENG Z, SUN W, XIONG X, et al. Novel refractory high-entropy ceramics: transition metal carbonitrides with superior ablation resistance. Corros. Sci., 2021, 184: 109359. |
[130] | WANG Y C, ZHANG B H, ZHANG C Y, et al. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C. J. Mater. Sci. Technol., 2022, 113: 40. |
[131] | GUO W J, HU J, YE Y C, et al. Ablation behavior of (TiZrHfNbTa)C high-entropy ceramics with the addition of SiC secondary under an oxyacetylene flame. Ceram. Int., 2022, 48(9):12790. |
[132] | YE Z M, ZENG Y, XIONG X, et al. Elucidating the role of preferential oxidation during ablation: insights on the design and optimization of multicomponent ultra-high temperature ceramics. J. Adv. Ceram., 2022, 11(12): 1956. |
[133] | CHEN Z Z, WANG H X, LI C R, et al. Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350-2050 ℃. J. Eur. Ceram. Soc., 2023, 43(6):2700. |
[134] | MCCORMACK S J, TSENG K P, WEBER R J K, et al. In-situ determination of the HfO2-Ta2O5-temperature phase diagram up to 3000 ℃. J. Am. Ceram. Soc., 2019, 102(8):4848. |
[135] | WANG F, NORTHWOOD D O. Oxides formed between ZrO2 and Nb2O5. J. Mater. Sci., 1995, 30: 4003. |
[136] | CAI F Y, NI D W, BAO W C, et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites. Compos. B Eng., 2022, 243: 110177. |
[137] | COUTURES J P, COUTURES J. The system HfO2-TiO2. J. Am. Ceram. Soc., 1987, 70(6):383. |
[138] | MCHALE A E, ROTH R S. Investigation of the phase transition in ZrTiO4 and ZrTiO4-SnO2 solid solutions. J. Am. Ceram. Soc., 1983, 66(2):C-18. |
[139] | KREBS M A, CONDRATE S R A. Vibrational spectra of HfO2-ZrO2 solid solutions. J. Am. Ceram. Soc., 1982, 65(9):c144. |
[140] |
WARING J L, ROTH R S. Phase equilibria in the system vanadium oxide-niobium oxide. J. Res. Natl. Bur. Stand A Phys. Chem., 1965, 69a(2):119.
DOI PMID |
[141] | SCHADOW H, OPPERMANN H, WEHNER B. Investigations on the quasi-binary system V2O5-Ta2O5. Cryst. Res. Technol., 2006, 27(5):691. |
[142] | JONGEJAN A, WILKINS A. A re-examination of the system Nb2O5-TiO2 at liquidus temperatures. J. Less-Common Met., 1969, 19(3):185. |
[143] | ROTH R S, COUGHANOUR L W. Phase equilibrium relations in the systems titania-niobia. J. Res. Natl. Bur. Stand, 1955, 55(4):209. |
[144] | WARING J L, ROTH R S. Effect of oxide additions on the polymorphism of tantalum pentoxide (system Ta2O5-TiO2). J. Res. Natl. Bur. Stand A Phys. Chem., 1968, 72(2):175. |
[145] | ROTH R, WARING J. Effect of oxide additions on the polymorphism of tantalum pentoxide III. Stabilization of the low temperature structure type. J. Res. Natl. Bur. Stand A Phys. Chem., 1970, 74(4):485. |
[146] | HOLTZBERG F, REISMAN A. Sub-solidus equilibria in the system Nb2O5-Ta2O5. J. Phys. Chem., 1961, 65(7):1192. |
[147] | CHANG L L Y, SCROGER M G, PHILLIPS B. Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3. J. Am. Ceram. Soc., 1967, 50(4):211. |
[148] | WANG F, YAN X L, SHAO L, et al. Irradiation damage behavior in novel high-entropy carbide ceramics. Trans. Am. Nucl. Soc., 2019, 120: 327. |
[149] | XIN X T, BAO W C, WANG X G, et al. Reduced He ion irradiation damage in ZrC-based high-entropy ceramics. J. Adv. Ceram., 2023, 12(5):916. |
[150] | ZHOU Y C, ZHAO B, CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol., 2021, 74: 105. |
[151] | ZHANG W M, XIANG H M, DAI F Z, et al. Achieving ultra- broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). J. Adv. Ceram., 2022, 11(4):545. |
[152] | HU Y, NI D W, CHEN B W, et al. Cf/(CrZrHfNbTa)C-SiC high- entropy ceramic matrix composites for potential multi-functional applications. J. Mater. Sci. Technol., 2024, 182: 132. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[7] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[8] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[9] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[10] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[11] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[12] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[13] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||