Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (5): 457-466.DOI: 10.15541/jim20230448
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• REVIEW • Next Articles
ZHANG Hui1,2(), XU Zhipeng1,2, ZHU Congtan1,2, GUO Xueyi1,2, YANG Ying1,2()
Received:
2023-09-28
Revised:
2023-12-15
Published:
2024-05-20
Online:
2024-01-08
Contact:
YANG Ying, professor. E-mail: muyicaoyang@csu.edu.cnAbout author:
ZHANG Hui (2001-), female, Master candidate. E-mail: 223512181@csu.edu.cn
Supported by:
CLC Number:
ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application[J]. Journal of Inorganic Materials, 2024, 39(5): 457-466.
Fig. 1 Scalable-deposition techniques of large-area PSCs (a) Blade-coating; (b) Slot-die coating; (c) Bar coating[21]; (d) Inkjet printing[22]; (e) Screen printing[23]; (f) Co-evaporation[24]; (g) Vacuum flash-assisted solution process (VASP)[26]
Perovskite layer composition | Deposition technique | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Area/cm2 | Ref. |
---|---|---|---|---|---|---|---|
FA0.88Cs0.12PbI3 | One-step blade-coating | 1.00 | 21.21 | 72 | 15.30 | 205 | [ |
MAPbI3 | One-step blade-coating | 1.08 | 23.17 | 68 | 17.06 | 1 | [ |
FAPbI3 | Two-step blade-coating | 6.71 | 3.47 | 71 | 16.54 | 25 | [ |
FAPbI3 | Two-step blade-coating | 6.65 | 3.72 | 75 | 18.65 | 25 | [ |
(FACs)Pb(IBr) | Vacuum evaporation+blade-coating | 1.20 4.72 | 24.42 5.59 | 82 76 | 24.03 20.02 | 1 16 | [ |
FA0.15MA0.85PbI3 | Screen printing | 1.10 | 23.93 | 69 | 18.12 | 1 | [ |
MAPbI3 | Co-evaporation | 6.71 | 3.68 | 73 | 18.13 | 21 | [ |
FA0.81MA0.15PbI2.51Br0.45 | Two-step spin-coating+VASP | 1.14 | 23.19 | 76 | 20.38 | 1 | [ |
FA0.995MA0.005Pb(I0.995Br0.005)3 | Vacuum evaporation+spin-coating | 1.18 | 24.55 | 77 | 22.26 | 1 | [ |
Table 1 Summary of large area (≥1 cm2) perovskite layer composition, deposition techniques and corresponding PSCs performance
Perovskite layer composition | Deposition technique | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Area/cm2 | Ref. |
---|---|---|---|---|---|---|---|
FA0.88Cs0.12PbI3 | One-step blade-coating | 1.00 | 21.21 | 72 | 15.30 | 205 | [ |
MAPbI3 | One-step blade-coating | 1.08 | 23.17 | 68 | 17.06 | 1 | [ |
FAPbI3 | Two-step blade-coating | 6.71 | 3.47 | 71 | 16.54 | 25 | [ |
FAPbI3 | Two-step blade-coating | 6.65 | 3.72 | 75 | 18.65 | 25 | [ |
(FACs)Pb(IBr) | Vacuum evaporation+blade-coating | 1.20 4.72 | 24.42 5.59 | 82 76 | 24.03 20.02 | 1 16 | [ |
FA0.15MA0.85PbI3 | Screen printing | 1.10 | 23.93 | 69 | 18.12 | 1 | [ |
MAPbI3 | Co-evaporation | 6.71 | 3.68 | 73 | 18.13 | 21 | [ |
FA0.81MA0.15PbI2.51Br0.45 | Two-step spin-coating+VASP | 1.14 | 23.19 | 76 | 20.38 | 1 | [ |
FA0.995MA0.005Pb(I0.995Br0.005)3 | Vacuum evaporation+spin-coating | 1.18 | 24.55 | 77 | 22.26 | 1 | [ |
Fig. 2 Film-forming mechanism of perovskite layer (a) LaMer model for nucleation and growth of perovskite films[5]; (b) Relationship between volumetric and interfacial energy for the energy barrier to form a nucleus[28]; (c) Photographs and PCEs of PSCs from devices fabricated on test areas of the respective substrates (>100 cm2) (u0: speed of air knife)[29]; (d) J-V curves of perovskite crystal array (PCA) treated PSCs[30]
Fig. 3 Composition engineering of perovskite material ABX3 (a) Schematic diagram of crystal structure of perovskite[32]; (b) J-V curves of solar modules based on W/O and W/Cs perovskite films[34]; (c) X-ray diffraction patterns of CsxFA1-xPbI1.8Br1.2 perovskite films[35]; (d) Roles of cations in the realized degradation routes[36] (IC: instability index); (e) Fill factor limitation comprises nonradiative loss (blue area) and transport loss (pink area)[39]; (f) J-V curves of 1.03 cm2 PSCs and 10.93 cm2 mini-module level PSCs with insets showing their pictures[39]; (g) Scanning electron microscopy (SEM) images of FACs perovskite films with different compositions[40]; (h) J-V curves of FACs perovskite solar cells with different compositions before and after light soaking[40]; (i) Pb4f high-resolution X-ray photoelectron spectra of perovskite films using PbI2 precursor films with light irradiation for 0-8 h[43]
Fig. 4 Additive engineering of perovskite precursor ink (a) SEM images of vapor deposited PbI2 (V-PbI2) with solution processed PbI2 (S-PbI2) as the control films, or solution processed NH4Cl-PbI2 films, and their corresponding perovskite films[60]; (b) J-V curve and picture of a large-area PSC (1.01 cm2) based on NpMAI (NpMA: 1-naphthalenemethylammounium) treated films[61]; (c) Digital images of two pieces of representative crown-FACsPbI3 films (16 and 100 cm2 area) [63]; (d) J-V curves for the champion sulfolane treated PSCs with 0.09, 0.16, and 1 cm2 working areas[64]; (e) J-V curves of a larger device (1 cm2) with perfluorobenzene (HFB)[65]; (f) PCE distributions of 10 independent PSCs with (target) and without (control) modification[66]; (g) J-V curve and photograph of a 5 cm×5 cm BTAI-MAPbI3 based perovskite solar module (PSM)[67]
Perovskite layer composition | Factor affecting perovskite crystallinity | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Area/cm2 | Ref. | |
---|---|---|---|---|---|---|---|---|
FA0.83Cs0.17PbI3 | Solvent system | DMF/NMP | 15.35 | 1.67 | 76 | 19.54 | 65 | [ |
MA0.6FA0.4PbI3 | 2-ME/DMSO/CBH | 5.81 16.07 | 4.25 1.53 | 78 78 | 18.126 19.15 | 18 50 | [ | |
(FAPbI3)0.875(CsPbBr3)0.125 | DMF/DMPU | 6.69 | 3.70 | 72 | 17.71 | 10 | [ | |
(FAPbI3)0.95(CsPbBr3)0.05 | DMF/DMPU | 10.82 | 2.15 | 77 | 17.94 | 20 | [ | |
FA0.83Cs0.17PbI2.83Br0.17 | DMF/NMP/DPSO | 1.08 | 20.63 | 74 | 16.63 | 21 | [ | |
(FAPbI3)0.95(MAPbBr3)0.05 | 2-ME/DMI | 15.46 | 1.71 | 76 | 20.15 | 81 | [ | |
(FAPbI3)0.95(MAPbBr3)0.05 | 2-ME/CHP | 5.79 11.79 | 4.54 2.14 | 80 81 | 20.99 20.40 | 15 31 | [ | |
MAPbI3 | 2-ME/DMSO | 3.19 | 7.19 | 70 | 14.57 | 2 | [ | |
FAPbI3 | 2-ME/ACN | 8.36 | 3.06 | 67 | 17.10 | 13 | [ | |
MAPbI3 | 2-ME/DMSO/ACN | 18.90 | 1.17 | 76 | 16.90 | 64 | [ | |
FAPbI3 | DMF/DMSO/ACN | 9.00 | 3.14 | 76 | 21.90 | 16 | [ | |
Cs0.03(FA0.97MA0.03)0.97Pb(I0.97Br0.03)3 | DMF/DMSO/EtOH | 1.19 3.50 | 23.98 7.57 | 74 72 | 21.04 18.95 | 1 3 | [ | |
(FAMA)PbI3 | Type of additive | NH4Cla | 7.31 | 2.96 | 67 | 14.55 | 25 | [ |
(FAMA)PbI3 | NpMAIa | 1.19 | 24.53 | 76 | 22.26 | 1 | [ | |
(FACs)PbI3 | Crown | 5.63 14.29 | 4.17 1.67 | 71 58 | 16.69 13.84 | 16 100 | [ | |
MAPbI3 | Sulfolane | 7.44 | 3.04 | 71 | 16.06 | 37 | [ | |
FAPbI3 | Hexaflorobenzene | 1.21 | 25.2 | 80 | 25.12 | 1 | [ | |
FAPbI3 | NAMHI | 6.61 | 3.85 | 79 | 20.10 | 10 | [ | |
MAPbI3 | BTAI | 6.52 | 3.51 | 80 | 18.57 | 12 | [ | |
FA0.9MA0.03Cs0.07Pb(I0.92Br0.08)3 | PMA-AA | 11.54 | 2.37 | 80 | 21.95 | 14 | [ |
Table 2 Summary of large area (≥1 cm2) perovskite layer composition, factors influencing the crystallinity (solvent system and additive type) and performance of corresponding PSCs
Perovskite layer composition | Factor affecting perovskite crystallinity | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Area/cm2 | Ref. | |
---|---|---|---|---|---|---|---|---|
FA0.83Cs0.17PbI3 | Solvent system | DMF/NMP | 15.35 | 1.67 | 76 | 19.54 | 65 | [ |
MA0.6FA0.4PbI3 | 2-ME/DMSO/CBH | 5.81 16.07 | 4.25 1.53 | 78 78 | 18.126 19.15 | 18 50 | [ | |
(FAPbI3)0.875(CsPbBr3)0.125 | DMF/DMPU | 6.69 | 3.70 | 72 | 17.71 | 10 | [ | |
(FAPbI3)0.95(CsPbBr3)0.05 | DMF/DMPU | 10.82 | 2.15 | 77 | 17.94 | 20 | [ | |
FA0.83Cs0.17PbI2.83Br0.17 | DMF/NMP/DPSO | 1.08 | 20.63 | 74 | 16.63 | 21 | [ | |
(FAPbI3)0.95(MAPbBr3)0.05 | 2-ME/DMI | 15.46 | 1.71 | 76 | 20.15 | 81 | [ | |
(FAPbI3)0.95(MAPbBr3)0.05 | 2-ME/CHP | 5.79 11.79 | 4.54 2.14 | 80 81 | 20.99 20.40 | 15 31 | [ | |
MAPbI3 | 2-ME/DMSO | 3.19 | 7.19 | 70 | 14.57 | 2 | [ | |
FAPbI3 | 2-ME/ACN | 8.36 | 3.06 | 67 | 17.10 | 13 | [ | |
MAPbI3 | 2-ME/DMSO/ACN | 18.90 | 1.17 | 76 | 16.90 | 64 | [ | |
FAPbI3 | DMF/DMSO/ACN | 9.00 | 3.14 | 76 | 21.90 | 16 | [ | |
Cs0.03(FA0.97MA0.03)0.97Pb(I0.97Br0.03)3 | DMF/DMSO/EtOH | 1.19 3.50 | 23.98 7.57 | 74 72 | 21.04 18.95 | 1 3 | [ | |
(FAMA)PbI3 | Type of additive | NH4Cla | 7.31 | 2.96 | 67 | 14.55 | 25 | [ |
(FAMA)PbI3 | NpMAIa | 1.19 | 24.53 | 76 | 22.26 | 1 | [ | |
(FACs)PbI3 | Crown | 5.63 14.29 | 4.17 1.67 | 71 58 | 16.69 13.84 | 16 100 | [ | |
MAPbI3 | Sulfolane | 7.44 | 3.04 | 71 | 16.06 | 37 | [ | |
FAPbI3 | Hexaflorobenzene | 1.21 | 25.2 | 80 | 25.12 | 1 | [ | |
FAPbI3 | NAMHI | 6.61 | 3.85 | 79 | 20.10 | 10 | [ | |
MAPbI3 | BTAI | 6.52 | 3.51 | 80 | 18.57 | 12 | [ | |
FA0.9MA0.03Cs0.07Pb(I0.92Br0.08)3 | PMA-AA | 11.54 | 2.37 | 80 | 21.95 | 14 | [ |
[1] | NREL. Best research-cell efficiency chart [2023-12-13]. https://www.nrel.gov/pv/cell-efficiency.html. |
[2] | GREEN M A, DUNLOP E D, YOSHITA M, et al. Solar cell efficiency tables (version 62). Prog. Photovoltaics, 2023, 31(7): 651. |
[3] | BU T L, ONO L K, LI J, et al. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy, 2022, 7(6): 528. |
[4] | LIN H, YANG M, RU X N, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy, 2023, 8(8): 789. |
[5] | LEE J, LEE D, JEONG D, et al. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater., 2019, 29(47): 1807047. |
[6] | 关英翔. 大面积钙钛矿型太阳能电池及组件制作工艺. 北京: 北京信息科技大学硕士学位论文, 2015. |
[7] |
RONG Y G, HOU X M, HU Y, et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun., 2017, 8: 14555.
DOI PMID |
[8] | PARIDA B, SINGH A, SOOPY A K K, et al. Recent developments in upscalable printing techniques for perovskite solar cells. Adv. Sci., 2022, 9(14): 220308. |
[9] | 丁建宁. 新型薄膜太阳能电池. 北京: 化学工业出版社, 2018: 81-82. |
[10] | ZHANG H, ZHAO C X, YAO J X, et al. Dopant-free NiOx nanocrystals: a low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew. Chem. Int. Ed., 2023, 62(24): e202219307. |
[11] |
LIU C, YANG Y, CHEN H, et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810.
DOI PMID |
[12] | WU X, GAO D P, SUN X L, et al. Backbone engineering enables highly efficient polymer holetransporting materials for inverted perovskite solar cells. Adv. Mater., 2022, 35(12): 2208431. |
[13] | CHEN Y, LIN P, CAI B, et al. Research progress of inorganic hole transport materials in perovskite solar cells. J. Inorg. Mater., 2023, 38(9): 991. |
[14] |
ZHU C T, GAO J, CHEN T, et al. Intrinsic thermal stability of inverted perovskite solar cells based on electrochemical deposited PEDOT. J. Energy Chem., 2023, 83: 445.
DOI |
[15] | PARK B W, KWON H W, LEE Y H, et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy, 2021, 6(8): 419. |
[16] | LI J B, MUNIR R, FAN Y Y, et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule, 2(7): 1313. |
[17] | ZHANG J W, BU T L, LI J, et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A, 2020, 8(17): 8447. |
[18] | WEN Y T, LI J, GAO X F, et al. Two-step sequential blade-coating large-area FA-based perovskite thin film via a controlled PbI2 microstructure. Acta Phys.-Chim. Sin., 2023, 32(2): 2203048. |
[19] | TAN L G, ZHOU J J, ZHAO X, et al. Combined vacuum evaporation and solution process for high-efficiency large‐area perovskite solar cells with exceptional reproducibility. Adv. Mater., 2023, 35(3): 2205027. |
[20] | 杨志春, 吴狄, 剡晓波, 等. 大面积钙钛矿薄膜制备技术的研究进展. 材料导报, 2021, 35(1): 1046. |
[21] | LI D Y, ZHANG D Y, LIM K S, et al. A review on scaling up perovskite solar cells. Adv. Funct. Mater., 2021, 31(12): 2008621. |
[22] | CHEN Y J, WU H J, MA J J, et al. Droplet manipulation and crystallization regulation in inkjet-printed perovskite film formation. CCS Chem., 2022, 4(5): 1465. |
[23] | CHEN C S, CHEN J X, HAN H C, et al. Perovskite solar cells based on screen-printed thin films. Nature, 2022, 612(7939): 266. |
[24] | LI J, WANG H, CHIN X Y, et al. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule, 2020, 4(5): 1035. |
[25] | LEYDEN M R, JIANG Y, QI Y B, et al. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A, 2016, 4(34): 13125. |
[26] |
LI X, BI D Q, YI C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58.
DOI PMID |
[27] | SANCHEZ S, PFEIFER L, VACHOPOUOUS N, et al. Rapid hybrid perovskite film crystalization form solution. Chem. Sov. Rev., 2021, 50(12): 7108. |
[28] | LIU C, CHENG Y B, GE Z Y. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Sov. Rev., 2020, 49(6): 1653. |
[29] | GEISTERT K, TERNES S, RITZER D B, et al. Controlling thin film morphology formation during gas quenching of slot-die coated perovskite solar modules. ACS Appl. Mater. Interfaces, 2023, 15(45): 52519. |
[30] | SHEN Z C, HAN Q F, LUO X H, et al. Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci., 2022, 15(3): 1078. |
[31] |
DUNLAP-SHOHL W A, ZHOU Y Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films. Chem. Rev., 2019, 119(5): 3193.
DOI |
[32] | ZHENG Z W, WANG S Y, HU Y, et al. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem. Sci., 2022, 13(8): 2167. |
[33] | MUSCARELLA L A, EHRLER B. The influence of strain on phase stability in mixed-halide perovskites. Joule, 2022, 6(9): 2016. |
[34] | LIU X H, CHEN M, ZHANG Y, et al. High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chem. Eng. J., 2022, 431(4): 133713. |
[35] |
XIAO K, LIN H Y, ZHANG M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594): 762.
DOI PMID |
[36] | SUN S J, TIIHONEN A, OVIEDO F, et al. A data fusion approach to optimize compositional stability of halide perovskites. Matter, 2021, 4(4): 1305. |
[37] |
SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309): 206.
PMID |
[38] | ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531. |
[39] | CHANG J H, FENG E M, LI H Y, et al. Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Letter, 2023, 15(issue): 164. |
[40] | DENG Y H, XU S, CHEN S S, et al. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini- modules with improved photostability. Nat. Energy, 2021, 6(6): 633. |
[41] | JACOBSSON T J, CORREA-BAEBA J P, NARAKI E H, et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc., 2016, 138(32): 10331. |
[42] | MACPHERSON S, DOHERTY T A S, WINCHESTAR A J, et al. Local nanoscale phase impurities are degradation sites in halide perovskite. Nature, 2022, 607(7918): 294. |
[43] | LIANG J W, HU X Z, WANG C, et al. Origins and influences of metallic lead in perovskite solar cells. Joule, 6(4): 816. |
[44] | CHAO L F, NIU T T, GAO W Y, et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater., 2021, 33(14): 2005410. |
[45] |
BU T L, LI J, LI H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548): 1327.
DOI PMID |
[46] |
CHEN S S, DAI X Z, XU S, et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science, 2021, 373(6557): 902.
DOI PMID |
[47] | LI H Y, BU T, LI J, et al. Ink engineering for blade coating FA-dominated perovskites in ambient air for efficient solar cells and modules. ACS Appl. Mater. Interfaces, 2021, 13(16): 18724. |
[48] | LEE D K, LIM K S, LEE J W, et al. Scalable perovskite coating via anti-solvent-free Lewis acid-base adduct engineering for efficient perovskite solar modules. J. Mater. Chem. A, 2021, 9(5): 3018. |
[49] | YANG Z C, ZHANG W J, WU S H, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Adv. Sci., 2021, 7(18): eabg3749. |
[50] | CHUNG J, KIM S, LI Y, et al. Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules. Adv. Energy Mater., 2023, 13(22): 2300595. |
[51] | YOO J W, JANG J H, KIM U, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol- based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5(9): 2420. |
[52] | LI J Z, DAGAR J, SHARGAIEVA O, et al. 20.8% slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Adv. Energy Mater., 2021, 11(10): 2003460. |
[53] | LI J Z, DAGAR J, SHARGAIEVA O, et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater., 2022, 13(33): 2203898. |
[54] | DENG Y H, BRACKE C H V, DAI X Z, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv., 2019, 5(12): eaax7537. |
[55] | YUAN L H, CHEN X N, GUO X M, et al. Volatile perovskite precursor ink enables window printing of phase-pure FAPbI3 perovskite solar cells and modules in ambient atmosphere. Angew. Chem. Int. Ed., 2024, 63(7): e202316954. |
[56] | NOEL N K, HABISREYTINGER S N, WENGER B, et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci., 2016, 10(1): 145. |
[57] | LIANG Q, LIU K, SUN M, et al. Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Adv. Mater., 2022, 34(16): 2200276. |
[58] | ZHAI P, REN L X, LI S Q, et al. Light modulation strategy for highest-efficiency water-processed perovskite solar cells. Matter, 2022, 5(12): 4450. |
[59] |
WANG W, ZHOU J, TANG W. Passivation strategies of perovskite film defects for solar cells. J. Inorg. Mater., 2022, 37(2): 129.
DOI |
[60] | TONG G Q, SON D, ONO L K, et al. Scalable fabrication of >90 cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater., 2021, 11(10): 2003712. |
[61] | ZHOU T, XU Z Y, WANG R, et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater., 2022, 34(17): 2200705. |
[62] |
MING Y, HU Y, MEI A, et al. Application of lead acetate additive for printable perovskite solar cell. J. Inorg. Mater., 2022, 37(2): 197.
DOI |
[63] | CHEN R H, WU Y Z, WANG Y K, et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules. Adv. Funct. Mater., 2021, 31(11): 2008760. |
[64] | HUANG H H, LIU Q H, TSAI H, et al. A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule, 2021, 5(4): 958. |
[65] | HUANG Z J, BAI Y, HUANG X D, et al. Anion-π interactions supress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(2023): 531. |
[66] | MENG Y Y, WANG Y L, LIU C, et al. Epitaxial growth of α-FAPbI3 at a well-matched heterointerface for efficient perovskite solar cells and solar modules. Adv. Mater., 2024, 36(6): 2309208. |
[67] | MIAO Y, REN M, WANG H F, et al. Surface termination on unstable methylammonium-based perovskite using a steric barrier for improved perovskite solar cells. Angew. Chem. Int. Ed., 2023, 62(51): e202312726. |
[68] | LIU D C, CHEN C, WANG X Z, et al. Enhanced quasi-Fermi level splitting of perovskite solar cells by universal dual-functional polymer. Adv. Mater., 2023, 36(13): 2310962. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||