Journal of Inorganic Materials
Previous Articles Next Articles
QIN Shanli1, GUO Jiawen1, CHEN Yanmeng4, JU An’an1, WEI Yi1, HUANG Kelin1, HOU Xianghua1, LÜ Sishi5, WEN Zhipeng1, WU Lian2,3
Received:2025-10-28
Revised:2025-12-11
Contact:
WU Lian, associate professor. E-mail: wulian@gdcri.com; WEN Zhipeng, senior engineer. E-mail: wenzhipeng_01@sina.com
About author:QIN Shanli (1989–), female, senior engineer. E-mail: qinshanli2024@163.com
Supported by:CLC Number:
QIN Shanli, GUO Jiawen, CHEN Yanmeng, JU An’an, WEI Yi, HUANG Kelin, HOU Xianghua, LÜ Sishi, WEN Zhipeng, WU Lian. Recent Advances in Constructing Oriented Ion Transport Channels with Two-dimensional Layered Materials for Electrochemical Energy Storage[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250429.
| [1] QUILTY C D, WU D, LI W, et al. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chemical Reviews, 2023, 123(4): 1327. [2] WU L, HONG L, GAO S, et al. Cu2-xSe@montmorillonite heterostructured electrocatalyst for high-performance lithium-sulfur batteries. Journal of Energy Storage, 2024, 101: 113800. [3] WU L, ZHAO Y, YU Y, et al. FeS2 intercalated montmorillonite as a multifunctional separator coating for high-performance lithium-sulfur batteries. Inorganic Chemistry Frontiers, 2023, 10(2): 651. [4] EDIGAR M, T. M E, M. M C, et al. Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials. Journal of Energy Storage, 2023, 73B: 109013. [5] CHENG Y, XIE Y, YAN S, et al. Maximizing the ion accessibility and high mechanical strength in nanoscale ion channel MXene electrodes for high-capacity zinc-ion energy storage. Science Bulletin, 2022, 67(21): 2216. [6] WROGEMANN J M, LÜTHER M J, BÄRMANN P, et al. Overcoming diffusion limitation of faradaic processes: property-performance relationships of 2D conductive metal-organic framework Cu3(HHTP)2 for reversible lithium-ion storage. Angewandte Chemie International Edition, 2023, 62(26): e202303111. [7] PETTINARI C, TOMBESI A.MOFs for electrochemical energy conversion and storage.Inorganics, 2023, 11(2): 65. [8] OTGONBAYAR Z, YANG S, KIM I J, et al. Recent advances in 2D MXene and solid state electrolyte for energy storage applications: comprehensive review. Chemical Engineering Journal, 2023, 472: 144801. [9] PHILIP A, KUMAR A R.Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: a review.Renewable and Sustainable Energy Reviews, 2023, 182: 113423. [10] HE Y, SHEN X, ZHANG Y.Layered 2D materials in batteries.ACS Applied Nano Materials, 2024, 7(24): 27907. [11] CHEN Z, ZHI C.MXene based zinc ion batteries: Recent development and prospects.Journal of Inorganic Materials, 2024, 39(2): 204. [12] RUIZ-HITZKY E, ARANDA P.Polymer-salt intercalation complexes in layer silicates.Advanced Materials, 1990, 2(11): 545. [13] WEN Z P, WEI Y, HOU X H,et al. Research progress of bentonite-based functional materials in electrochemical energy storage. Journal of Inorganic Materials, 2024, 39(12): 1301. [14] YANG Y, LI Z, YANG Z, et al. Ultrafast lithium-ion transport engineered by nanoconfinement effect. Advanced Materials, 2025, 37(8): e2416266. [15] LIU Y T, ZHU P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Advanced Materials, 2018, 30(23): e1707334. [16] LIAN H, MOMEN R, XIAO Y, et al. High ionic conductivity motivated by multiple ion-transport channels in 2D MOF-based lithium solid state battery. Advanced Functional Materials, 2023, 33(49): 2306060. [17] HE M, GUAN M, ZHAN R, et al. Two-dimensional materials applied in membranes of redox flow battery. Chemistry-An Asian Journal, 2023, 18(3): e202201152. [18] VIJAYAKUMAR V, GHOSH M, ASOKAN K, et al. 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Advanced Energy Materials, 2023, 13(15): 2203326. [19] YANG Y, DONG R, CHENG H, et al. 2D layered materials for fast-charging lithium-ion battery anodes. Small, 2023, 19(34): 2301574. [20] JIANG D, WANG X, YIN S, et al. Solid-state electrolytes with vertically aligned Li+ transport channels for lithium batteries: a comprehensive review. Energy Storage Materials, 2025, 74: 103986. [21] XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557(7705): 409. [22] LI X, WANG Y, XI K, et al. Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Letters, 2022, 14(1): 210. [23] JU Z, KING S T, XU X, et al. Vertically assembled nanosheet networks for high-density thick battery electrodes. Proceedings of the National Academy of Sciences, 2022, 119(40): e2212777119. [24] NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16(1): 61. [25] XU M, WEI M.Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications.Advanced Functional Materials, 2018, 28(47): 1802943. [26] 胡朔. NiAl LDHs电极材料的制备及超级电容器性能研究. 郑州:郑州轻工业大学硕士学位论文, 2025. [27] XIONG D, DENG X, CAO Z, et al. 2D metal-organic frameworks for electrochemical energy storage. Energy & Environmental Materials, 2023, 6(6): e12521. [28] TAKAAKI, TSURUOKA, SHUHEI, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition, 2009, 121(26): 4833. [29] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 2017, 16(2): 220. [30] NIU L, WU T, CHEN M, et al. Conductive metal-organic frameworks for supercapacitors. Advanced Materials, 2022, 34(52): 2200999. [31] KHALIL I E, FONSECA J, REITHOFER M R, et al. Tackling orientation of metal-organic frameworks (MOFs): the quest to enhance MOF performance. Coordination Chemistry Reviews, 2023, 481: 215043. [32] 张秩远, 陈浩彤, 李妍, 等. 插层结构过渡金属氢氧化物的制备及其能源应用研究进展. 化学通报, 2024, 87(8): 913. [33] RADICH J G, MCGINN P J, KAMAT P V.Graphene-based composites for electrochemical energy storage.Electrochemical Society Interface, 2011, 20(1): 63. [34] WU Z, WANG E, ZHANG G, et al. Recent progress of vertical graphene: preparation, structure engineering, and emerging energy applications. Small, 2024, 20(15): 2307923. [35] 何明亮. 垂直石墨烯自支撑电极的可控制备与超级电容器应用研究. 南昌: 江西师范大学博士学位论文, 2024. [36] LIMA K A L, LARANJEIRA J A S, MARTINS N F, et al. Petal-graphyne: a novel 2D carbon allotrope for high-performance Li and Na ion storage. Journal of Energy Storage, 2025, 130: 117235. [37] LIAN W, XIN H, YIFANG Z, et al. Montmorillonite-based materials for electrochemical energy storage. Green Chemistry, 2024(2): 26. [38] LV R, KOU W, GUO S, et al. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer. Angewandte Chemie International Edition, 2022, 134(7): e202114220. [39] ZHANG Y, HUANG J, LIU H, et al. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Advanced Energy Materials, 2023, 13(23): 2300156. [40] GASA J V, WEISS R, SHAW M T.Structured polymer electrolyte blends based on sulfonated polyetherketoneketone (SPEKK) and a poly (ether imide)(PEI).Journal of Membrane Science, 2008, 320(1/2): 215. [41] 吴代琼, 苏琼, 陈磊, 等. 石墨烯在复合材料中的定向排布及其应用进展. 机械工程学报, 2023, 59(18): 144. [42] ZHU Y, JU Z, ZHANG X, et al. Evaporation-induced vertical alignment enabling directional ion transport in a 2D-nanosheet-based battery electrode. Advanced Materials, 2020, 32(10): 1907941. [43] WANG Y, LI J, LI X, et al. Metal-organic-framework derived Co@CN modified horizontally aligned graphene oxide array as free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10(2): 699. [44] HUANG X, HUANG J, YANG D, et al. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Advanced Science, 2021, 8(18): 2101664. [45] LI X, LI M, YANG Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTX MXene sphere with enhanced Zn ion transportation and superior cycle lifespan. Advanced Energy Materials, 2020, 10(35): 2001394. [46] LIN C, ZHANG Y, LIEU W Y, et al. Boosting Zinc-ion storage capability in longitudinally aligned MXene arrays with microchannel architecture. Advanced Functional Materials, 2025, 35(3): 2413613. [47] OWUSU K A, WANG Z, SAAD A, et al. Room temperature synthesis of vertically aligned amorphous ultrathin NiCo-LDH nanosheets bifunctional flexible supercapacitor electrodes. Energy & Environmental Materials, 2024, 7(2): e12545. [48] TANG L B, LI P Y, CUI R D, et al. Adjusting crystal orientation to promote sodium-ion transport in V5S8@graphene anode materials for high-performance sodium-ion batteries. Small Methods, 2023, 7(2): 2201387. [49] DAI H, ZHAO X, XU H, et al. Design of vertically aligned two-dimensional heterostructures of rigid Ti3C2Tx MXene and pliable vanadium pentoxide for efficient lithium ion storage. ACS Nano, 2022, 16(4): 5556. [50] CHEN Y, XIAO L, LI Y, et al. Laser-assisted preparation of vertically aligned reduced graphene oxide/tannic acid arrays for flexible aqueous zinc-ion hybrid capacitors. Applied Surface Science, 2024, 665: 160230. [51] JIANG X, ZHANG Y, TANG C, et al. Printing 3D array of electrodes made of graphene/carbon black for microsupercapacitors. ACS Applied Nano Materials, 2025, 8(21): 10956. [52] CHEN H, PEI A, WAN J, et al. Tortuosity effects in lithium-metal host anodes. Joule, 2020, 4(4): 938. [53] MU Y, CHEN Y, WU B, et al. Dual vertically aligned electrode-inspired high-capacity lithium batteries. Advanced Science, 2022, 9(30): 2203321. [54] CHEN Q, WEI Y, ZHANG X, et al. Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes. Advanced Energy Materials, 2022, 12(18): 2200072. [55] TANG L, LIAO C, LI T,et al. In situ vertically aligned MoS2 arrays electrodes for complexing agent-free bromine-based flow batteries with high power density and long lifespan. Advanced Energy Materials, 2024, 14(1): 2303282. [56] LI W, LI X, ZHANG X, et al. Flexible poly (vinyl alcohol)-polyaniline hydrogel film with vertically aligned channels for an integrated and self-healable supercapacitor. ACS Applied Energy Materials, 2020, 3(9): 9408. [57] ZHAO T, YANG D, LI B X, et al. A supercapacitor architecture for extreme low-temperature operation featuring MXene/carbon nanotube electrodes with vertically aligned channels and a novel freeze-resistant electrolyte. Advanced Functional Materials, 2024, 34(24): 2314825. [58] ZHU L, YANG H, XU T, et al. Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks. Advanced Functional Materials, 2025, 35(19): 2419334. [59] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49(23): 8790. [60] LAN X, LUO N, LI Z, et al. Status and prospect of two-dimensional materials in electrolytes for all-solid-state lithium batteries. ACS nano, 2024, 18(13): 9285. [61] WANG Y, TU H, SUN A, et al. Dual Li+ transport enabled by BN-assisted solid-polymer-electrolyte for high-performance lithium batteries. Chemical Engineering Journal, 2023, 475: 146414. [62] HUANG Y, LEE M, YANG M, et al. Montmorillonite particle alignment and crystallization and ion-conducting behavior of montmorillonite/poly (ethylene oxide) nanocomposites. Applied Clay Science, 2010, 49(3): 163. [63] LI F, ZHOU B, HE J, et al. Polyethylene oxide-based solid electrolytes with fast Li-ion transport channels constructed from 2D montmorillonite for solid-state lithium-metal batteries. Chemical Engineering Journal, 2024, 488: 150700. [64] SHI J, GUI F, HUANG K, et al. Magnetic field-assisted vertically aligned NiFe2O4 nanosheets in composite solid polymer electrolytes for advanced all solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2025, 678: 583. [65] XU L, XIAO X, TU H, et al. Engineering functionalized 2D metal-organic frameworks nanosheets with fast Li+ conduction for advanced solid Li batteries. Advanced Materials, 2023, 35(38): 2303193. [66] MENG J, YIN M, GUO K, et al. In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries. Nano-Micro Letters, 2025, 17(1): 248. [67] ZHAO Y, LI L, ZHOU D, et al. Opening and constructing stable lithium-ion channels within polymer electrolytes. Angewandte Chemie International Edition, 2024, 136(31): e202404728. [68] TANG W, TANG S, GUAN X, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Advanced Functional Materials, 2019, 29(16): 1900648. [69] WANG Y, LI X, QIN Y, et al. Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy, 2021, 90: 106490. [70] MIAO X, HONG J, HUANG S, et al. Vertically-aligned card-house structure for composite solid polymer electrolyte with fast and stable ion transport channels. Small, 2024, 20(31): 2310912. [71] WANG L, YI S, LIU Q, et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy Storage Materials, 2023, 63: 102961. [72] LI X, FENG J, LI Y, et al. Regulating Li+ transport behavior by cross-scale synergistic rectification strategy for dendrite-free and high area capacity polymeric all-solid-state lithium batteries. Energy Storage Materials, 2024, 72: 103759. [73] 杨舢, 吴朝军, 陈业红. 锂离子电池中凝胶聚合物电解质研究进展. 中国造纸, 2024, 43(11): 116. [74] ZUO J, DANG Y, ZHAI P, et al. Fast lithium ion transport pathways constructed by two-dimensional boron nitride nanoflakes in quasi-solid-state polymer electrolyte. Nano Letters, 2023, 23(17): 8106. [75] DU K, SUN C, XUAN Y.Functionalized fillers as “ions relay stations” enabling Li+ ordered transport in quasi-solid electrolytes for high-stability lithium metal batteries.Journal of Energy Chemistry, 2025, 102: 84. [76] WEI X, CAI M, YUAN F, et al. The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606: 154817. [77] KAIBARTA B, DASMAHAPATRA A K.Carbon-based hierarchical mesoporous polyaniline/montmorillonite nanocomposites for high energy density supercapacitors.Journal of Energy Storage, 2024, 83: 110703. [78] YANG Y, XIAO R, SUN X, et al. Constructing two dimensional composite nanosheets with montmorillonite and graphene-like carbon: towards high-rate-performance PVA based gel polymer electrolytes for quasi-solid-state supercapacitors. Materials Chemistry and Physics, 2022, 287: 126333. [79] BU R, ZHANG B, LI D, et al. Recyclable covalent organic framework templated polymer entanglement for quasi-solid-state lithium-metal batteries. Advanced Functional Materials, 2025: e12777. [80] 孙文浩, 刘娜, 张锟, 等. 高安全锂离子电池用耐高温隔膜的研究进展. 材料工程, 2025, 53(7): 104. [81] MENG X, PENG Q, PENG L, et al. In situ growth of covalent organic framework on graphene oxide nanosheet enable proton-selective transport in flow battery membrane. Journal of Power Sources, 2024, 609: 234690. [82] LI L, BU R, ZHONG W, et al. Densely packed and vertically oriented covalent organic framework membrane enabled efficient ion sieving for zinc iodine battery. Nano Energy, 2025, 138: 110886. [83] WANG D, CHEN N, LONG C, et al. Electric-field-aligned functionalized-layered double hydroxide/polyphenyl ether composite membrane for ion transport. International Journal of Hydrogen Energy, 2019, 44(26): 13852. [84] FANG F, LIU L, MIN L, et al. Enhanced proton conductivity of Nafion membrane with electrically aligned sulfonated graphene nanoplates. International Journal of Hydrogen Energy, 2021, 46(34): 17784. [85] GAO Y, QIAO Z, ZHANG L, et al. High-performance proton exchange membrane with vertically aligned montmorillonite nanochannels. Small, 2025, 21(7): 2409192. |
| [1] | FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism [J]. Journal of Inorganic Materials, 2026, 41(1): 12-26. |
| [2] | XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal [J]. Journal of Inorganic Materials, 2026, 41(1): 1-11. |
| [3] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [4] | WEN Shenhao, PENG Dezhao, LIN Zheyu, GUO Xia, HUANG Peixin, ZHANG Zhizhen. Interface Engineering for the Anode in Solid-state Lithium Batteries Based on LLZTO Electrolyte [J]. Journal of Inorganic Materials, 2025, 40(9): 1013-1021. |
| [5] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [6] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [7] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [8] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [9] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [10] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [11] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [12] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [13] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [14] | TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation [J]. Journal of Inorganic Materials, 2025, 40(7): 772-780. |
| [15] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||