Journal of Inorganic Materials ›› 2026, Vol. 41 ›› Issue (1): 1-11.DOI: 10.15541/jim20250081
• REVIEW • Next Articles
XU Jintao1,2(
), GAO Pan3(
), HE Weiyi1, JIANG Shengnan1, PAN Xiuhong1, TANG Meibo1, CHEN Kun1, LIU Xuechao1(
)
Received:2025-02-24
Revised:2025-03-17
Published:2026-01-20
Online:2025-06-27
Contact:
GAO Pan, professor. E-mail: 32128@sdju.edu.cn;About author:XU Jintao (1999-), male, Master candidate. E-mail: 2781659973@qq.com
Supported by:CLC Number:
XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal[J]. Journal of Inorganic Materials, 2026, 41(1): 1-11.
| Property | Si | 3C-SiC | 4H-SiC | 6H-SiC | Ref. |
|---|---|---|---|---|---|
| Stacking sequence | — | ABC | ABCB | ABCACB | [ |
| Crystal structure | Diamond structure | Zinc blende structure | Wurtzite structure | Wurtzite structure | [ |
| Bandgap/eV | 1.12 | 2.36 | 3.26 | 3.02 | [ |
| Lattice constant, a/nm | 0.54310 | 0.43596 | 0.30798 | 0.30805 | [ |
| Lattice constant, c/nm | 0.54310 | 0.43596 | 1.00820 | 1.51151 | [ |
| Density/(g·cm-3) | 2.329 | 3.166 | 3.211 | 3.211 | [ |
| Melting point, Tm/K | 1685 | 3103 | 3103 | 3103 | [ |
| Electrical resistivity (n-type)/(Ω·cm) | 0.4-1.6 | ≤0.0006 | 0.015-0.025 | 0.015-0.025 | [ |
| Electron mobility/(cm2·V-1·s-1) | 1450 | 1000 | 800 (//C axis) 1000 (⊥C axis) | 450 (//C axis) 200 (⊥C axis) | [ |
| Hole mobility/(cm2·V-1·s-1) | 500 | 100 | 120 | 100 | [ |
| Electron saturated drift velocity/ (cm·s-1) | 1×107 | 2×107 | 2.2×107 | 1.9×107 | [ |
| Hole saturated drift velocity/(cm·s-1) | — | 1.3×107 | 1.3×107 | 1.3×107 | [ |
| Relative dielectric constant | 11.9 | 9.72 (//C axis) 9.72 (⊥C axis) | 10.32 (//C axis) 9.76 (⊥C axis) | 10.03 (//C axis) 9.66 (⊥C axis) | [ |
| Thermal conductivity/(W·cm-1·K-1) | 1.56 | 3.3-4.9 | 3.3-4.9 | 3.3-4.9 | [ |
| Coefficient of thermal expansion, α/ (×10-6, K-1) | 2.59 | 3.8 | 4.7 (//C axis) 4.3 (⊥C axis) | 4.7 (//C axis) 4.3 (⊥C axis) | [ |
| Young modulus/GPa | 130-188 | 310-550 | 390-690 | 390-690 | [ |
| Poisson’s ratio | 0.064-0.28 | 0.24 | 0.21 | 0.21 | [ |
Table 1 Comparison of parameters of silicon carbide crystal with silicon[2,7 -10]
| Property | Si | 3C-SiC | 4H-SiC | 6H-SiC | Ref. |
|---|---|---|---|---|---|
| Stacking sequence | — | ABC | ABCB | ABCACB | [ |
| Crystal structure | Diamond structure | Zinc blende structure | Wurtzite structure | Wurtzite structure | [ |
| Bandgap/eV | 1.12 | 2.36 | 3.26 | 3.02 | [ |
| Lattice constant, a/nm | 0.54310 | 0.43596 | 0.30798 | 0.30805 | [ |
| Lattice constant, c/nm | 0.54310 | 0.43596 | 1.00820 | 1.51151 | [ |
| Density/(g·cm-3) | 2.329 | 3.166 | 3.211 | 3.211 | [ |
| Melting point, Tm/K | 1685 | 3103 | 3103 | 3103 | [ |
| Electrical resistivity (n-type)/(Ω·cm) | 0.4-1.6 | ≤0.0006 | 0.015-0.025 | 0.015-0.025 | [ |
| Electron mobility/(cm2·V-1·s-1) | 1450 | 1000 | 800 (//C axis) 1000 (⊥C axis) | 450 (//C axis) 200 (⊥C axis) | [ |
| Hole mobility/(cm2·V-1·s-1) | 500 | 100 | 120 | 100 | [ |
| Electron saturated drift velocity/ (cm·s-1) | 1×107 | 2×107 | 2.2×107 | 1.9×107 | [ |
| Hole saturated drift velocity/(cm·s-1) | — | 1.3×107 | 1.3×107 | 1.3×107 | [ |
| Relative dielectric constant | 11.9 | 9.72 (//C axis) 9.72 (⊥C axis) | 10.32 (//C axis) 9.76 (⊥C axis) | 10.03 (//C axis) 9.66 (⊥C axis) | [ |
| Thermal conductivity/(W·cm-1·K-1) | 1.56 | 3.3-4.9 | 3.3-4.9 | 3.3-4.9 | [ |
| Coefficient of thermal expansion, α/ (×10-6, K-1) | 2.59 | 3.8 | 4.7 (//C axis) 4.3 (⊥C axis) | 4.7 (//C axis) 4.3 (⊥C axis) | [ |
| Young modulus/GPa | 130-188 | 310-550 | 390-690 | 390-690 | [ |
| Poisson’s ratio | 0.064-0.28 | 0.24 | 0.21 | 0.21 | [ |
Fig. 3 Preparation of 3C-SiC thin films by CVD process[39] (a) Principle configuration of CVD reactor; (b) Flow diagram of epitaxial growth of 3C-SiC film by CVD
Fig. 7 Schematic diagram of SiC single crystal grown by sublimation epitaxy sandwich method 1. SiC single-crystal vapour source; 2. SiC single-crystal substrate; 3. Graphite platelets fixing the clearance ΔX between crystals
Fig. 8 3C-SiC crystal growth mechanism proposed by Jokubaviciu’s team[66] (a) Sublimation epitaxial growth arrangement; (b) 3C-SiC formation stages on off-oriented hexagonal SiC substrate HL: homoepitaxial layer; LT: large terrace
Fig. 9 Process improvement of SE method by a research team of Linköping University, including original (left), 45° rotated (middle) and circular (right) spacer openings[67]
Fig. 10 SiC single crystal grown by the TSSG method[73,81] (a) Two-dimensional growth diagram[73]; (b) Photographs of 2-4 inch 3C-SiC boule at Institute of Physics, Chinese Academy of Sciences in 2024[81]
| Method | Year | Institution | Size | Thickness | Growth rate/ (μm·h-1) | Innovation point | Quality | Ref. |
|---|---|---|---|---|---|---|---|---|
| CVD | 1983 | Kyoto University | ~5 cm2 | 34 μm | 2.5 | Two-step growing process | No other crystal type | [ |
| 2002-2004 | HOYA Company | 10 cm2 | 200 μm | 40 | Wavy Si substrate | Eliminate planar defects APBs | [ | |
| 2009-2010 | CNR-IMM | φ6 inch | 7 μm | 6.5 | Si(111) surfaces are used | Surface and interface are flat with SF as low as 104 cm-1 | [ | |
| 2017-2023 | Wuhan University | 1.5 cm2 | 10 μm | 30 | LCVD | The twin defect density is low and the crystal quality is excellent | [ | |
| CF-PVT | 2005-2006 | Ecole Polytechnique de Grebnol | φ3 cm | 400 μm | 68 | 3C-SiC crystal without BPD | A lot of twins, layer fault | [ |
| SE | 2013-2015 | Linköping University | 0.49 cm2 | 1 mm | 600 | Grow on 4H-SiC | FWHM ranges from 26 to 56 arcsec | [ |
| 2019 | FAU University of Erlangen-Nuremberg | φ2 inch | 320-520 μm | 190-320 | Grow directly on the 3C-SiC seed | FWHM ranges from 138 to 140 arcsec | [ | |
| TSSG | 2010 | French National Institute of Scientific Research | — | 500 μm | 23 | Grow directly on the 3C-SiC seed | SFs and dislocation densities up to 108 cm-2 | [ |
| 2024 | Institute of Physics, Chinese Academy of Sciences | φ2-4 inch | 4-10 mm | 50-113 | Using 4H-SiC as the seed, N2 is blown in | FWHM is 30 arcsec and surface defect density is 92.2 cm-1 | [ |
Table 2 Progress of growth of 3C-SiC crystals by different growth methods[19,37,41,43 -51,60 -61,65 -67,69,78 -79,81]
| Method | Year | Institution | Size | Thickness | Growth rate/ (μm·h-1) | Innovation point | Quality | Ref. |
|---|---|---|---|---|---|---|---|---|
| CVD | 1983 | Kyoto University | ~5 cm2 | 34 μm | 2.5 | Two-step growing process | No other crystal type | [ |
| 2002-2004 | HOYA Company | 10 cm2 | 200 μm | 40 | Wavy Si substrate | Eliminate planar defects APBs | [ | |
| 2009-2010 | CNR-IMM | φ6 inch | 7 μm | 6.5 | Si(111) surfaces are used | Surface and interface are flat with SF as low as 104 cm-1 | [ | |
| 2017-2023 | Wuhan University | 1.5 cm2 | 10 μm | 30 | LCVD | The twin defect density is low and the crystal quality is excellent | [ | |
| CF-PVT | 2005-2006 | Ecole Polytechnique de Grebnol | φ3 cm | 400 μm | 68 | 3C-SiC crystal without BPD | A lot of twins, layer fault | [ |
| SE | 2013-2015 | Linköping University | 0.49 cm2 | 1 mm | 600 | Grow on 4H-SiC | FWHM ranges from 26 to 56 arcsec | [ |
| 2019 | FAU University of Erlangen-Nuremberg | φ2 inch | 320-520 μm | 190-320 | Grow directly on the 3C-SiC seed | FWHM ranges from 138 to 140 arcsec | [ | |
| TSSG | 2010 | French National Institute of Scientific Research | — | 500 μm | 23 | Grow directly on the 3C-SiC seed | SFs and dislocation densities up to 108 cm-2 | [ |
| 2024 | Institute of Physics, Chinese Academy of Sciences | φ2-4 inch | 4-10 mm | 50-113 | Using 4H-SiC as the seed, N2 is blown in | FWHM is 30 arcsec and surface defect density is 92.2 cm-1 | [ |
| [1] |
KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 2015, 54(4): 040103.
DOI URL |
| [2] | MATSUNAMI H. Fundamental research on semiconductor SiC and its applications to power electronics. Proceedings of the Japan Academy,Series B, 2020, 96(7): 235. |
| [3] |
HAMADA K, NAGAO M, AJIOKA M, et al. SiC-emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Transactions on Electron Devices, 2015, 62(2): 278.
DOI URL |
| [4] | CHIU P, DOGMUS E. Power SiC 2022 market and technology report product brochure. Yole Développement,2022, 1: 1. |
| [5] |
LIMPIJUMNONG S, LAMBRECHT W. Total energy differences between SiC polytypes revisited. Physical Review B, 1998, 57: 12017.
DOI URL |
| [6] |
WELLMANN P J. Review of SiC crystal growth technology. Semiconductor Science and Technology, 2018, 33(10): 103001.
DOI URL |
| [7] | SCHUH P. Sublimation epitaxy of bulk-like cubic silicon carbide. Erlangen: Friedrich-Alexander-Universität Erlangen-Nürnberg PhD Thesis, 2019. |
| [8] | 施尔畏. 碳化硅晶体生长与缺陷. 北京: 科学出版社, 2012: 79-84. |
| [9] | Ltd. Product Center. (2025-02-01) [2025-03-07]. https://www.tankeblue.com/product12/info.html?id=18. |
| [10] | Ltd. Product Center. (2025-02-01)[2025-03-07]. https://www.jinggelingyu.com/product/61.html. |
| [11] |
CHENG Z, LIANG J, KAWAMURA K, et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications, 2022, 13: 7201.
DOI PMID |
| [12] | SYVÄJÄRVI M, MA Q B, JOKUBAVICIUS V, et al. Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials and Solar Cells, 2016, 145: 104. |
| [13] |
SCHÖNER A, KRIEGER M, PENSL G, et al. Fabrication and characterization of 3C-SiC-based MOSFETs. Chemical Vapor Deposition, 2006, 12: 523.
DOI URL |
| [14] | UCHIDA H, MINAMI A, SAKATA T, et al. High temperature performance of 3C-SiC MOSFETs with high channel mobility. Materials Science Forum, 2012, 717-720: 1109. |
| [15] |
VIA F L, ZIMBONE M, BONGIORNO C, et al. New approaches and understandings in the growth of cubic silicon carbide. Materials, 2021, 14(18): 5348.
DOI URL |
| [16] |
PÜSCHE R, HUNDHAUSEN M, LEY L, et al. Temperature induced polytype conversion in cubic silicon carbide studied by Raman spectroscopy. Journal of Applied Physics, 2004, 96(10): 5569.
DOI URL |
| [17] |
SCHÖLER M, VIA F L, MAUCERI M, et al. Overgrowth of protrusion defects during sublimation growth of cubic silicon carbide using free-standing cubic silicon carbide substrates. Crystal Growth & Design, 2021, 21(7): 4046.
DOI URL |
| [18] |
KOLLMUSS M, VIA F L, WELLMANN P J. Effect of growth conditions on the surface morphology and defect density of CS-PVT-grown 3C-SiC. Crystal Research and Technology, 2023, 58(7): 2300034.
DOI URL |
| [19] |
SCHUH P, STEINER J, VIA F L, et al. Limitations during vapor phase growth of bulk (100) 3C-SiC using 3C-SiC-on-SiC seeding stacks. Materials, 2019, 12(15): 2353.
DOI URL |
| [20] | LEE K K, PENSL G, SOUEIDAN M, et al. Very low interface state density from thermally oxidized single-domain 3C-SiC/6H- SiC grown by vapour-liquid-solid mechanism. Japanese Journal of Applied Physics, 2006, 45(9R): 6823. |
| [21] |
CAETANO E W S, BEZERRA E F, FREIRE V N, et al. Ultrafast electron drift velocity overshoot in 3C-SiC. Solid State Communications, 2000, 113(9): 539.
DOI URL |
| [22] |
ANZALONE R, PRIVITERA S, CAMARDA M, et al. Interface state density evaluation of high quality hetero-epitaxial 3C-SiC (001) for high-power MOSFET applications. Materials Science and Engineering: B, 2015, 198: 14.
DOI URL |
| [23] |
BEAUCARNE G, BROWN A S, KEEVERS M J, et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells. Progress in Photovoltaics: Research and Applications, 2002, 10(5): 345.
DOI URL |
| [24] |
ROCCAFORTE F, GRECO G, FIORENZA P, et al. Towards vertical Schottky diodes on bulk cubic silicon carbide (3C-SiC). Applied Surface Science, 2022, 606:154896.
DOI URL |
| [25] |
ICHIKAWA N, KATO M, ICHIMURA M. Photocathode for hydrogen generation using 3C-SiC epilayer grown on vicinal off- angle 4H-SiC substrate. Applied Physics Express, 2015, 8(9): 091301.
DOI URL |
| [26] |
SUN J, JOKUBAVICIUS V, GAO L, et al. Solar driven energy conversion applications based on 3C-SiC. Materials Science Forum, 2016, 858: 1028.
DOI URL |
| [27] |
CHRISTLE D J, KLIMOV P V, CASAS C F D L, et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Physical Review X, 2017, 7(2): 021046.
DOI URL |
| [28] |
SCHÖLER M, LEDERER M W, SCHUH P, et al. Intentional incorporation and tailoring of point defects during sublimation growth of cubic silicon carbide by variation of process parameters. Physica Status Solidi B, 2020, 257(1): 1900286.
DOI URL |
| [29] |
SCHÖLER M, BRECHT C, WELLMANN P J. Annealing-induced changes in the nature of point defects in sublimation-grown cubic silicon carbide. Materials, 2019, 12(15): 2487.
DOI URL |
| [30] |
SAMEERA J N, ISLAM M A, ISLAM S, et al. Cubic silicon carbide (3C-SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell. Optical Materials, 2022, 123: 111911.
DOI URL |
| [31] |
HEIDARZADEH H. Performance analysis of cubic silicon carbide solar cell as an appropriate candidate for high temperature application. Optical and Quantum Electronics, 2020, 52(4): 192.
DOI |
| [32] |
XING Y M, HU E Y, WANG F Z, et al. Cubic silicon carbide/zinc oxide heterostructure fuel cells. Applied Physics Letters, 2020, 117(16): 162105.
DOI URL |
| [33] |
LI H J, ZHOU Z D, CAO X H, et al. Fabrication and performance of 3C-SiC photocathode materials for water splitting. Progress in Natural Science: Materials International, 2024, 34(1): 12.
DOI URL |
| [34] | BASAK N. Fabrication and characterization of 3C-silicon carbide micro sensor for wireless blood pressure measurements. Washington: Howard University PhD Thesis, 2008. |
| [35] |
LEBEDEV A A, PETROV V N, TITKOV A N, et al. Heteropolytype structures with SiC quantum dots. Technical Physics Letters, 2005, 31: 997.
DOI URL |
| [36] |
NAGASAWA H, YAGI K. 3C-SiC single-crystal films grown on 6 inch Si substrates. Physica Status Solidi B, 1997, 202(1): 335.
DOI URL |
| [37] | 孙清云. 激光CVD法制备3C-SiC薄膜的结构调控及性能研究. 武汉: 武汉理工大学博士学位论文, 2023. |
| [38] | NAGASAWA H, YAGI K, KAWAHARA T. 3C-SiC hetero- epitaxial growth on undulant Si (001) substrate. Journal of Crystal Growth, 2002, 237: 1244. |
| [39] | 梁涛. CVD法制备3C-SiC/Si薄膜研究. 成都: 电子科技大学硕士学位论文, 2006. |
| [40] | 石彪, 朱明星, 陈义, 等. 单晶硅衬底异质外延3C-SiC薄膜研究进展. 硅酸盐通报, 2011, 30(5): 1083. |
| [41] |
NISHINO S, POWELL J A, WILL H A. Production of large area single crystal wafers of cubic SiC for semiconductor devices. Applied Physics Letters, 1983, 42(5): 460.
DOI URL |
| [42] | FLEISCHMAN A J, ZORMAN C A, MEHREGANY M, et al. Epitaxial growth of 3C-SiC films on 4-inch diameter (100) silicon wafers by APCVD. Institute of Physics Conference Series, 1996, 142: 197. |
| [43] | NAGASAWA H, YAGI K, KAWAHARA T, et al. Low-defect 3C-SiC grown on undulant-Si (001) substrates//CHOYKE W J. Silicon carbide:recent major advances. New York: Springer, 2004: 207-228. |
| [44] | NAGASAWA H, YAGI K, KAWAHARA T, et al. 3C-SiC monocrystals grown on undulant Si(001) substrates. MRS Online Proceedings Library, 2002, 742: 16. |
| [45] | NAGASAWA H, KAWAHARA T, YAGI K. Heteroepitaxial growth and characteristics of 3C-SiC on large-diameter Si (001) substrates. Materials Science Forum, 2002, 389-393: 319. |
| [46] |
NISHIGUCHI T, NAKAMURA M, NISHIO K, et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition. Applied Physics Letters, 2004, 84(16): 3082.
DOI URL |
| [47] | SEVERINO A, BONGIORNO C, PILUSO N, et al. High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films, 2010, 518(6): 165. |
| [48] |
SEVERINO A, CAMARDA M, SCALESE S, et al. Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Applied Physics Letters, 2009, 95(11): 111905.
DOI URL |
| [49] |
ZHU P, XU Q, CHEN R, et al. Structural study of β-SiC (001) films on Si (001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100(4): 1634.
DOI URL |
| [50] |
SUN Q, ZHU P, XU Q, et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101(3): 1048.
DOI URL |
| [51] |
SUN Q, YANG M, LI J, et al. Heteroepitaxial growth of thick 3C-SiC (110) films by laser CVD. Journal of the American Ceramic Society, 2019, 102(8): 4480.
DOI |
| [52] | LELY J A. The preparation of silicon carbide single crystal and the control of the type and amount of internal impurities. Berichte der Deutschen Keramischen Gesellschaft, 1969, 32: 229. |
| [53] | HAMILTON D R. The growth of silicon carbide by sublimation. High Temperature Semiconductor, 1960: 45. |
| [54] |
TAIROV Y M, TSVETKOV V F. Investigation of growth processes of ingots of silicon carbide single crystals. Journal of Crystal Growth, 1978, 43(2): 209.
DOI URL |
| [55] | CHAUSSENDE D, BAILLET F, CHARPENTIER L, et al. Continuous feed physical vapor transport: toward high purity and long boule growth of SiC. Journal of the Electrochemical Society, 2003, 150(10): 653. |
| [56] | MANTZARI A, MERCIER F, SOUEIDAN M, et al. Structural characterization of CF-PVT grown bulk 3C-SiC. Materials Science Forum, 2009, 600: 67. |
| [57] | SUN G L, GALBEN-SANDULACHE I G, OUISSE T, et al. Improvements of the continuous feed-physical vapor transport technique (CF-PVT) for the seeded growth of 3C-SiC crystals. Silicon Carbide and Related Materials, 2010, 645: 63. |
| [58] | SEMMELROTH K, SCHULZE N, PENSL G. Growth of SiC polytypes by the physical vapour transport technique. Journal of Physics: Condensed Matter, 2004, 16(17): 1597. |
| [59] |
SEMMELROTH K, KRIEGER M, PENSL G, et al. Growth of cubic SiC single crystals by the physical vapor transport technique. Journal of Crystal Growth, 2007, 308(2): 241.
DOI URL |
| [60] | LATU-ROMAIN L, CHAUSSENDE D, BALLOUD C, et al. Characterization of bulk <111> 3C-SiC single crystals grown on 4H-SiC by the CF-PVT method. Materials Science Forum, 2006, 527/528/529: 99. |
| [61] |
LATU-ROMAIN L, CHAUSSENDE D, CHAUDOUËT P, et al. Study of 3C-SiC nucleation on (0001) 6H-SiC nominal surfaces by the CF-PVT method. Journal of Crystal Growth, 2005, 275(1/2): e609.
DOI URL |
| [62] |
TAIROV Y M, TSVETKOV V F, LILOV S K, et al. Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase. Journal of Crystal Growth, 1976, 36(1): 147.
DOI URL |
| [63] |
VODAKOV Y A, ROENKOV A D, RAMM M G, et al. Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layers. Physica Status Solidi B, 1997, 202(1): 177.
DOI URL |
| [64] |
MOKHOV E N, RAMM M G, ROENKOV A D, et al. Growth of silicon carbide bulk crystals by the sublimation sandwich method. Materials Science and Engineering: B, 1997, 46(1/2/3): 317.
DOI URL |
| [65] | JOKUBAVICIUS V, HUANG H H, SCHIMMEL S, et al. Towards bulk-like 3C-SiC growth using low off-axis substrates. Materials Science Forum, 2013, 740/741/742: 275. |
| [66] |
JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R, et al. Lateral enlargement growth mechanism of 3C-SiC on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2014, 14(12): 6514.
DOI URL |
| [67] |
JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R, et al. Single domain 3C-SiC growth on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2015, 15(6): 2940.
DOI URL |
| [68] | VASILIAUSKAS R. Sublimation growth and performance of cubic silicon carbide. Linköping: Linköping University PhD Thesis, 2012. |
| [69] |
SCHUH P, VIA F L, MAUCERI M, et al. Growth of large-area, stress-free, and bulk-like 3C-SiC (100) using 3C-SiC-on-Si in vapor phase growth. Materials, 2019, 12(13): 2179.
DOI URL |
| [70] | HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Materials Science and Engineering: B, 1999, 61(62): 29. |
| [71] | WANG G B, LI H, SHENG D, et al. Research progress on growth of SiC single crystal via high temperature solution method. Journal of Synthetic Crystals, 2022, 51(1): 3. |
| [72] | GU P, LEI P, YE S, et al. Research progress on the growth of silicon carbide single crystal via top-seeded solution growth method and its key issues. Journal of Synthetic Crystals, 2024, 53(5): 741. |
| [73] |
WANG G B, SHENG D, LI H, et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions. CrystEngComm, 2023, 25(4): 560.
DOI URL |
| [74] | YOSHIKAWA T, KAWANISHI S, TANAKA T. Solution growth of silicon carbide using Fe-Si solvent. Japanese Journal of Applied Physics, 2010, 49(5R): 051302. |
| [75] |
YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation- density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Applied Physics Express, 2014, 7(6): 065501.
DOI URL |
| [76] |
DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal. Crystal Growth & Design, 2016, 16(3): 1256.
DOI URL |
| [77] |
KAWANISHI S, SHIBATA H, YOSHIKAWA T. Contribution of dislocations in SiC seed crystals on the melt-back process in SiC solution growth. Materials, 2022, 15(5): 1796.
DOI URL |
| [78] | MERCIER F, KIM-HAK O, LORENZZI J, et al. Is the liquid phase a viable approach for bulk growth of 3C-SiC? Materials Science Forum, 2010, 645-648: 67. |
| [79] | CHAUSSENDE D. Vapor phase vs. liquid phase: what is the best choice for the growth of bulk 3C-SiC crystals? AIP Conference Proceedings, 2010, 1292(1): 1. |
| [80] | FERRO G. Overview of 3C-SiC crystalline growth. Materials Science Forum, 2010, 645-648: 49. |
| [81] |
WANG G B, SHENG D, YANG Y, et al. High-quality and wafer- scale cubic silicon carbide single crystals. Energy & Environmental Materials, 2024, 7(4): e12678.
DOI URL |
| [82] |
SHENG D, WANG G, YANG Y, et al. Modeling and suppressing interfacial instability in growth of SiC from high-temperature solutions. Crystal Growth & Design, 2025, 25(4): 1211.
DOI URL |
| [83] |
SCACE R I, SLACK G A. Solubility of carbon in silicon and germanium. The Journal of Chemical Physics, 1959, 30(6): 1551.
DOI URL |
| [84] |
LIANG G Q, QIAN H, SU Y L, et al. Review of solution growth techniques for 4H-SiC single crystal. China Foundry, 2023, 20(2): 159.
DOI |
| [85] |
MITANI T, KOMATSU N, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions. Journal of Crystal Growth, 2014, 401: 681.
DOI URL |
| [86] |
NARUMI T, KAWANISHI S, YOSHIKAWA T, et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC. Journal of Crystal Growth, 2014, 408: 25.
DOI URL |
| [87] |
MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution. Journal of Crystal Growth, 2015, 423: 45.
DOI URL |
| [1] | FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism [J]. Journal of Inorganic Materials, 2026, 41(1): 12-26. |
| [2] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [3] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [4] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [5] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [6] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [7] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [8] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [9] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [10] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [11] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [12] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [13] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [14] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [15] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||