Journal of Inorganic Materials
XU Jintao1,2, GAO Pan3, HE Weiyi1, JIANG Shengnan1, PAN Xiuhong1, TANG Meibo1, CHEN Kun1, LIU Xuechao1
Received:
2025-02-24
Revised:
2025-03-17
Contact:
GAO Pan, professor. E-mail: 32128@sdju.edu.cn; LIU Xuechao, professor. E-mail: xcliu@mail.sic.ac.cn
About author:
XU Jintao (1999-), male, Master candidate. E-mail: 2781659973@qq.com
Supported by:
CLC Number:
XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress in Preparation of Single Crystal 3C-SiC[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250081.
[1] KIMOTO T.Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] MATSUNAMI H.Fundamental research on semiconductor SiC and its applications to power electronics.Proceedings of the Japan Academy, Series B, 2020, 96(7): 235. [3] HAMADA K, NAGAO M, AJIOKA M,et al. SiC-Emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Transactions on Electron Devices, 2014, 62(2): 278. [4] CHIU P, DOGMUS E.Power SiC 2022 market and technology report product brochure.Yole Développement, 2022, 1: 1. [5] LIMPIJUMNONG S, LAMBRECHT W.Total energy differences between SiC polytypes revisited.Physical Review B, 1998, 57: 12017. [6] WELLMANN P J.Review of SiC crystal growth technology.Semiconductor Science and Technology, 2018, 33(10): 103001. [7] CHENG Z, LIANG J, KAWAMURA K,et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications, 2022, 13(1): 7201. [8] SYVAJARVI M, Ma Q B, JOKUBAVICIUS V,et al. Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials and Solar Cells, 2016, 145: 104. [9] SCHONER A, KRIEGER M, PENSL G, ,et al. Fabrication. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem.Vap. Depos., 2006, 12: 523. [10] UCHIDA H, MINAMI A.SAKATA,et al. High temperature performance of 3C-SiC MOSFETs with high channel mobility. Mater. Sci, Forum, 2012, 717: 1109. [11] VIA F, ZIMBONE M, BONGIORNO C,et al. New approaches and understandings in the growth of cubic silicon carbide. Materials, 2021, 14(18): 5348. [12] PUSCHE R, HUNDHAUSEN M, LEY L,et al. Temperature induced polytype conversion in cubic silicon carbide studied by Raman spectroscopy. Journal of Applied Physics, 2004, 96(10): 5569. [13] SCHOLER M, LAVIA F, MAUCERI M,et al. Overgrowth of protrusion defects during sublimation growth of cubic silicon carbide using free-standing cubic silicon carbide substrates. Crystal growth & design, 2021, 21(7): 4046. [14] KOLLMUSS M, LAVIA F, WELLMANN P J.Effect of growth conditions on the surface morphology and defect density of CS-PVT-grown 3C-SiC.Crystal Research and Technology, 2023, 58(7): 2300034. [15] SCHUH P, STEINER J, LAVIA F,et al. Limitations during vapor phase growth of bulk (100) 3C-SiC using 3C-SiC-on-SiC seeding stacks. Materials, 2019, 12(15): 2353. [16] 施尔畏. 碳化硅晶体生长与缺陷. 北京: 科学出版社, 2012: 79-84. [17] SCHUH P.Sublimation Epitaxy of Bulk-like Cubic Silicon Carbide. Universität Erlangen-Nürnberg Ph. D. Thesis, 2019: 21-22. [18] LEE K K, PENSL G, SOUEIDAN M,et al. Very low interface state density from thermally oxidized single-domain 3C-SiC/6H-SiC grown by vapour-liquid-Solid mechanism. Jpn. J. Appl. Phys., 2006, 45(9): 6823. [19] SCHÖNER A, KRIEGER M, PENSL G,et al. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem. Vap. Deposition, 2006, 12(8/9): 523. [20] ANZALONE R, PRIVITERA S, CAMARDA M,et al. Interface state density evaluation of high quality hetero-epitaxial 3C-SiC(001) for high-power MOSFET applications. Mater. Sci. Eng. B, 2015, 198: 14. [21] TANKEBLUE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07].https://www.tankeblue.com/product12/info.html?id=18. [22] BEIJING LATTICE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07]. https://www.jinggelingyu.com/product/61.html. [23] BEAUCARNE G, BROWN A S, KEEVERS M J,et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells? Prog. Photovoltaics Res. Appl., 2002, 10(5): 345. [24] SYVAJARVI M.et al.Cubic silicon carbide as a potential photovoltaic material.Sol. Energy Mater. Sol. Cells, 2016, 145: 104. [25] ICHIKAWA N, KATO M, ICHIMURA M.Photocathode for hydrogen generation using 3C-SiC epilayer grown on vicinal off-angle 4H-SiC substrate.Appl. Phys. Express, 2015, 8(9): 091301. [26] SUN J,JOKUBAVICIUS V,GAO L,et al. Solar driven energy conversion applications based on 3C-SiC. Mat. Sci. Forum, 2016, 858: 1028. [27] CHRISTLE D J, KLIMOV P V, CASAS C F D L,et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X, 2017, 7(2): 021046. [28] SCHÖLER M, LEDERER M W, SCHUH P,et al. Intentional incorporation and tailoring of point defects during sublimation growth of cubic silicon carbide by variation of process parameters. Phys. Status Solidi B, 2019, 257(1): 1900286. [29] SCHÖLER M, BRECHT C, WELLMANN P J. Annealing-induced changes in the nature of point defects in sublimation-grown cubic silicon carbide.Materials, 2019, 12(15): 2487. [30] SAMEERA, JANNATUN N, MOHAMMAD A I.Cubic silicon carbide (3C-SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell.Optical Materials, 2022, 123: 111911. [31] HEIDARZADEH H.Performance analysis of cubic silicon carbide solar cell as an appropriate candidate for high temperature application.Optical and Quantum Electronics, 2020, 52(4):192. [32] SYVÄJÄRVI, MIKAEL, QUANBAO M. Cubic silicon carbide as a potential photovoltaic material.Solar Energy Materials and Solar Cells, 2016, 145: 104. [33] LI H, ZHOU Z, CAO X.Fabrication and performance of 3C-SiC photocathode materials for water splitting.Progress in Natural Science: Materials International, 2024, 178: 21. [34] BASAK N.Fabrication and Characterization of 3C-silicon Carbide Micro Sensor for Wireless Blood Pressure Measurements. Ph. D. Thesis, 2008. [35] LEBEDEV A A, PETROV V N, TITKOV A N.Heteropolytype structures with SiC quantum dots.Technical physics letters, 2005, 31: 997. [36] NAGASAWA H, YAGI K.3C-SiC single-crystal films grown on 6 inch Si substrates.Physica Status Solidi (b), 1997, 202(1): 335. [37] SUN Q Y.Study on Structure Control and Properties of 3C-SiC Thin Films Prepared by Laser CVD Method. Wuhan: Master's thesis, Wuhan University of Technology, 2023: 26-27. [38] NAGASAWA H, YAGI K, KAWAHARA T.3C-SiC hetero-epitaxial growth on undulant Si (001) substrate.Journal of Crystal Growth, 2002, 237: 1244. [39] 石彪, 朱明星, 陈义, 等. 单晶硅衬底异质外延3C-SiC薄膜研究进展. 硅酸盐通报, 2011, 30(05): 1083. [40] NISHINO S, POWELL J A, WILL H A.Production of large area single crystal wafers of cubic SiC for semiconductor devices.Applied Physics Letters, 1983, 42(5): 460. [41] FLEISCHMAN A J, ZORMAN C A, MEHREGANY M, et al. Epitaxial Growth of 3C-SiC Films on 4-inch Diameter (100) Silicon Wafers by APCVD. Institute of Physics Conference Series, 1996, 142: 197. [42] NAGASAWA H, YAGI K, KAWAHARA T, et al.Low-defect 3C-SiC Grown on Undulant-Si (001) Substrates. Silicon Carbide: Recent Major Advances. Springer Nature Publishing, 2004: 207-228. [43] NISHIGUCHI T, NAKAMURA M, NISHIO K,et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition. Applied Physics Letters, 2004, 84(16): 3082. [44] NAGASAWA H, YAGI K, KAWAHARA T, et al. 3C-SiC Monocrystals Grown on Undulant Si (001) Substrates. MRS Online Proceedings Library (OPL), 2002, 742: 1-6. [45] NAGASAWA H, KAWAHARA T, YAGI K.Heteroepitaxial growth and characteristics of 3C-SiC on large-diameter Si (001) substrates.Materials Science Forum, 2002, 389: 319. [46] SEVERINO A, BONGIORNO C, PILUSO N,et al. High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films, 2010, 518(6): 165. [47] SEVERINO A, CAMARDA M, SCALESE S,et al. Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Applied Physics Letters, 2009, 95(11): 111905. [48] 梁涛. CVD 法制备 3C-SiC/Si 薄膜研究. 成都: 电子科技大学硕士学位论文, 2006. [49] ZHU P, XU Q, CHEN R, et al. Structural study of β-SiC (001) films on Si (001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100(4): 1634. [50] SUN Q, ZHU P, XU Q,et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101(3):1048. [51] SUN Q, YANG M, LI J,et al. Heteroepitaxial growth of thick 3C-SiC (110) films by laser CVD. Journal of the American Ceramic Society, 2019, 102(8): 4480. [52] LELY J A.The preparation of silicon carbide single crystal and the control of the type and amount of internal impurities.Detsch. Kerm. Ges, 1969, 32: 229. [53] HAMILTON D R.The growth of silicon carbide by sublimation.High Temperature Semiconductor, 1960: 45. [54] TAIROV Y M, TSVETKOV V F.Investigation of growth processes of ingots of silicon carbide single crystals.Journal of Crystal Growth, 1978, 43(2): 209. [55] CHAUSSENDE D, BAILLET F, CHARPENTIER L,et al. Continuous feed physical vapor transport: toward high purity and long boule growth of SiC. Journal of The Electrochemical Society, 2003, 150(10): 653. [56] MANTZARI A, MERCIER F, SOUEIDAN M,et al. Structural characterization of cf-pvt grown bulk 3C-SiC. Materials Science Forum, 2009, 600: 67. [57] SUN G L, GALBEN SANDULACHE I G. Improvements of the continuous feed-physical vapor transport technique (CF-PVT) for the seeded growth of 3C-SiC crystals.Silicon Carbide and Related Materials, 2010, 645: 63. [58] SEMMELROTH K, SCHULZE N, PENSL G.Growth of SiC polytypes by the physical vapour transport technique.Journal of Physics: Condensed Matter, 2004, 16(17): 1597. [59] SEMMELROTH K, KRIEGER M, PENSL G,et al. Growth of cubic SiC single crystals by the physical vapor transport technique. Journal of crystal growth, 2007, 308(2): 241. [60] LATU-ROMAIN L,CHAUSSENDE D,BALLOUD C,et al. Characterization of bulk< 111> 3C-SiC single crystals grown on 4H-SiC by the CF-PVT method. Materials Science Forum, 2006, 527: 99. [61] LATU-ROMAIN L, CHAUSSENDE D, CHAUDOUËT P,et al. Study of 3C-SiC nucleation on (0001) 6H-SiC nominal surfaces by the CF-PVT method. Journal of Crystal Growth, 2005, 275(1/2): E609. [62] TAIROV Y M, TSVETKOV V F, LILOV S K,et al. Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase. Journal of Crystal Growth, 1976, 36(1): 147. [63] VODAKOV Y A, ROENKOV A D, RAMM M G, et al. Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layer. Physica Status Solidi (b), 1997, 202(1): 177. [64] MOKHOV E N, RAMM M G, ROENKOV A D,et al. Growth of silicon carbide bulk crystals by the sublimation sandwich method. Materials Science and Engineering: B, 1997, 46(1/2/3): 317. [65] JOKUBAVICIUS V, HUANG H H, SCHIMMEL S,et al. Towards bulk-like 3C-SiC growth using low off-axis substrates. Materials Science Forum, 2013, 740: 275. [66] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Lateral enlargement growth mechanism of 3C-SiC on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2014, 14(12): 6514. [67] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Single domain 3C-SiC growth on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2015, 15(6): 2940. [68] VASILIAUSKAS, REMIGIJUS.Sublimation Growth and Performance of Cubic Silicon Carbide. Linköping University Electronic Press Ph. D. Thesis, 2012: 12-13. [69] SCHUH P, LAVIA F, MAUCERI M,et al. Growth of large-area, stress-free, and bulk-like 3C-SiC (100) using 3C-SiC-on-Si in vapor phase growth. Materials, 2019, 12(13): 2179. [70] HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals.Materials Science and Engineering: B, 1999, 61(62): 29. [71] WANG G B, LI H, SHENG D,et al. Research progress on growth of SiC single crystal by high temperature solution method. Journal of Synthetic Crystals, 2022, 51(1): 3. [72] GU P, LEI P, YE S,et al. Research progress on the growth of silicon carbide single crystal by top seed solution method and its key problems. Journal of Synthetic Crystals, 2024, 53(5): 741. [73] WANG G B, SHENG D, LI H,et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions. CrystEngComm, 2023, 25(4): 560. [74] YOSHIKAWA T, KAWANISHI S, TANAKA T.Solution growth of silicon carbide using Fe-Si solvent. Japanese Journal of Applied Physics, 2010, 49(5): 051302. [75] YAMAMOTO Y, HARADA S, SEKI K,et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Applied Physics Express, 2014, 7(6): 065501. [76] DAIKOKU H, KADO M, SEKI A,et al. Solution growth on concave surface of 4H-SiC crystal. Crystal Growth & Design, 2016, 16(3): 1256. [77] KAWANISHI S, SHIBATA H, YOSHIKAWA T.Contribution of dislocations in SiC seed crystals on the melt-back process in SiC solution growth.Materials, 2022, 15(5): 1796. [78] MERCIER F, KIMHAK O, LORENZZI J,et al. Is the liquid phase a viable approach for bulk growth of 3C-SiC? Materials Science Forum, 2010, 645: 67. [79] CHAUSSENDE D.Vapor phasevs. liquid phase: what is the best choice for the growth of bulk 3C-SiC crystals? AIP Conference Proceedings, 2010, 1292(1): 1. [80] FERRO G.Overview of 3C-SiC crystalline growth.Materials Science Forum, 2010, 645: 49. [81] WANG G B, SHENG D, YANG Y,et al. High-quality and wafer-scale cubic silicon carbide single crystals. Energy & Environmental Materials, 2023, 18: 12678. [82] SHENG D, WANG G, YANG Y,et al. Modeling and suppressing interfacial instability in growth of SiC from high-temperature solutions. Crystal Growth & Design, 2025, 25(4): 1211. [83] SCACE R I, SLACK G A.Solubility of carbon in silicon and germanium.The Journal of Chemical Physics, 1959, 30(6): 1551. [84] LIANG G Q, QIAN H, SU YL,et al. Review of solution growth techniques for 4H-SiC single crystal. China Foundry, 2023, 20(2): 159. [85] MITANI T, KOMATSU N, TAKAHASHI T,et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions. Journal of Crystal Growth, 2014, 401: 681. [86] NARUMI T, KAWANISHI S, YOSHIKAWA T,et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC. Journal of Crystal Growth, 2014, 408: 25. [87] MITANI T, KOMATSU N, TAKAHASHI T,et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution. Journal of Crystal Growth, 2015, 423: 45. |
[1] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
[2] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
[3] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
[4] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
[5] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
[6] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
[7] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
[8] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[11] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[12] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[13] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[14] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[15] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||