Journal of Inorganic Materials
XU Jintao1,2, GAO Pan3, HE Weiyi1, JIANG Shengnan1, PAN Xiuhong1, TANG Meibo1, CHEN Kun1, LIU Xuechao1
Received:
2025-02-24
Revised:
2025-03-17
Contact:
GAO Pan, professor. E-mail: 32128@sdju.edu.cn; LIU Xuechao, professor. E-mail: xcliu@mail.sic.ac.cn
About author:
XU Jintao (1999-), male, Master candidate. E-mail: 2781659973@qq.com
Supported by:
CLC Number:
XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress in Preparation of Single Crystal 3C-SiC[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250081.
[1] KIMOTO T.Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] MATSUNAMI H.Fundamental research on semiconductor SiC and its applications to power electronics.Proceedings of the Japan Academy, Series B, 2020, 96(7): 235. [3] HAMADA K, NAGAO M, AJIOKA M,et al. SiC-Emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Transactions on Electron Devices, 2014, 62(2): 278. [4] CHIU P, DOGMUS E.Power SiC 2022 market and technology report product brochure.Yole Développement, 2022, 1: 1. [5] LIMPIJUMNONG S, LAMBRECHT W.Total energy differences between SiC polytypes revisited.Physical Review B, 1998, 57: 12017. [6] WELLMANN P J.Review of SiC crystal growth technology.Semiconductor Science and Technology, 2018, 33(10): 103001. [7] CHENG Z, LIANG J, KAWAMURA K,et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications, 2022, 13(1): 7201. [8] SYVAJARVI M, Ma Q B, JOKUBAVICIUS V,et al. Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials and Solar Cells, 2016, 145: 104. [9] SCHONER A, KRIEGER M, PENSL G, ,et al. Fabrication. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem.Vap. Depos., 2006, 12: 523. [10] UCHIDA H, MINAMI A.SAKATA,et al. High temperature performance of 3C-SiC MOSFETs with high channel mobility. Mater. Sci, Forum, 2012, 717: 1109. [11] VIA F, ZIMBONE M, BONGIORNO C,et al. New approaches and understandings in the growth of cubic silicon carbide. Materials, 2021, 14(18): 5348. [12] PUSCHE R, HUNDHAUSEN M, LEY L,et al. Temperature induced polytype conversion in cubic silicon carbide studied by Raman spectroscopy. Journal of Applied Physics, 2004, 96(10): 5569. [13] SCHOLER M, LAVIA F, MAUCERI M,et al. Overgrowth of protrusion defects during sublimation growth of cubic silicon carbide using free-standing cubic silicon carbide substrates. Crystal growth & design, 2021, 21(7): 4046. [14] KOLLMUSS M, LAVIA F, WELLMANN P J.Effect of growth conditions on the surface morphology and defect density of CS-PVT-grown 3C-SiC.Crystal Research and Technology, 2023, 58(7): 2300034. [15] SCHUH P, STEINER J, LAVIA F,et al. Limitations during vapor phase growth of bulk (100) 3C-SiC using 3C-SiC-on-SiC seeding stacks. Materials, 2019, 12(15): 2353. [16] 施尔畏. 碳化硅晶体生长与缺陷. 北京: 科学出版社, 2012: 79-84. [17] SCHUH P.Sublimation Epitaxy of Bulk-like Cubic Silicon Carbide. Universität Erlangen-Nürnberg Ph. D. Thesis, 2019: 21-22. [18] LEE K K, PENSL G, SOUEIDAN M,et al. Very low interface state density from thermally oxidized single-domain 3C-SiC/6H-SiC grown by vapour-liquid-Solid mechanism. Jpn. J. Appl. Phys., 2006, 45(9): 6823. [19] SCHÖNER A, KRIEGER M, PENSL G,et al. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem. Vap. Deposition, 2006, 12(8/9): 523. [20] ANZALONE R, PRIVITERA S, CAMARDA M,et al. Interface state density evaluation of high quality hetero-epitaxial 3C-SiC(001) for high-power MOSFET applications. Mater. Sci. Eng. B, 2015, 198: 14. [21] TANKEBLUE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07].https://www.tankeblue.com/product12/info.html?id=18. [22] BEIJING LATTICE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07]. https://www.jinggelingyu.com/product/61.html. [23] BEAUCARNE G, BROWN A S, KEEVERS M J,et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells? Prog. Photovoltaics Res. Appl., 2002, 10(5): 345. [24] SYVAJARVI M.et al.Cubic silicon carbide as a potential photovoltaic material.Sol. Energy Mater. Sol. Cells, 2016, 145: 104. [25] ICHIKAWA N, KATO M, ICHIMURA M.Photocathode for hydrogen generation using 3C-SiC epilayer grown on vicinal off-angle 4H-SiC substrate.Appl. Phys. Express, 2015, 8(9): 091301. [26] SUN J,JOKUBAVICIUS V,GAO L,et al. Solar driven energy conversion applications based on 3C-SiC. Mat. Sci. Forum, 2016, 858: 1028. [27] CHRISTLE D J, KLIMOV P V, CASAS C F D L,et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X, 2017, 7(2): 021046. [28] SCHÖLER M, LEDERER M W, SCHUH P,et al. Intentional incorporation and tailoring of point defects during sublimation growth of cubic silicon carbide by variation of process parameters. Phys. Status Solidi B, 2019, 257(1): 1900286. [29] SCHÖLER M, BRECHT C, WELLMANN P J. Annealing-induced changes in the nature of point defects in sublimation-grown cubic silicon carbide.Materials, 2019, 12(15): 2487. [30] SAMEERA, JANNATUN N, MOHAMMAD A I.Cubic silicon carbide (3C-SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell.Optical Materials, 2022, 123: 111911. [31] HEIDARZADEH H.Performance analysis of cubic silicon carbide solar cell as an appropriate candidate for high temperature application.Optical and Quantum Electronics, 2020, 52(4):192. [32] SYVÄJÄRVI, MIKAEL, QUANBAO M. Cubic silicon carbide as a potential photovoltaic material.Solar Energy Materials and Solar Cells, 2016, 145: 104. [33] LI H, ZHOU Z, CAO X.Fabrication and performance of 3C-SiC photocathode materials for water splitting.Progress in Natural Science: Materials International, 2024, 178: 21. [34] BASAK N.Fabrication and Characterization of 3C-silicon Carbide Micro Sensor for Wireless Blood Pressure Measurements. Ph. D. Thesis, 2008. [35] LEBEDEV A A, PETROV V N, TITKOV A N.Heteropolytype structures with SiC quantum dots.Technical physics letters, 2005, 31: 997. [36] NAGASAWA H, YAGI K.3C-SiC single-crystal films grown on 6 inch Si substrates.Physica Status Solidi (b), 1997, 202(1): 335. [37] SUN Q Y.Study on Structure Control and Properties of 3C-SiC Thin Films Prepared by Laser CVD Method. Wuhan: Master's thesis, Wuhan University of Technology, 2023: 26-27. [38] NAGASAWA H, YAGI K, KAWAHARA T.3C-SiC hetero-epitaxial growth on undulant Si (001) substrate.Journal of Crystal Growth, 2002, 237: 1244. [39] 石彪, 朱明星, 陈义, 等. 单晶硅衬底异质外延3C-SiC薄膜研究进展. 硅酸盐通报, 2011, 30(05): 1083. [40] NISHINO S, POWELL J A, WILL H A.Production of large area single crystal wafers of cubic SiC for semiconductor devices.Applied Physics Letters, 1983, 42(5): 460. [41] FLEISCHMAN A J, ZORMAN C A, MEHREGANY M, et al. Epitaxial Growth of 3C-SiC Films on 4-inch Diameter (100) Silicon Wafers by APCVD. Institute of Physics Conference Series, 1996, 142: 197. [42] NAGASAWA H, YAGI K, KAWAHARA T, et al.Low-defect 3C-SiC Grown on Undulant-Si (001) Substrates. Silicon Carbide: Recent Major Advances. Springer Nature Publishing, 2004: 207-228. [43] NISHIGUCHI T, NAKAMURA M, NISHIO K,et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition. Applied Physics Letters, 2004, 84(16): 3082. [44] NAGASAWA H, YAGI K, KAWAHARA T, et al. 3C-SiC Monocrystals Grown on Undulant Si (001) Substrates. MRS Online Proceedings Library (OPL), 2002, 742: 1-6. [45] NAGASAWA H, KAWAHARA T, YAGI K.Heteroepitaxial growth and characteristics of 3C-SiC on large-diameter Si (001) substrates.Materials Science Forum, 2002, 389: 319. [46] SEVERINO A, BONGIORNO C, PILUSO N,et al. High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films, 2010, 518(6): 165. [47] SEVERINO A, CAMARDA M, SCALESE S,et al. Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Applied Physics Letters, 2009, 95(11): 111905. [48] 梁涛. CVD 法制备 3C-SiC/Si 薄膜研究. 成都: 电子科技大学硕士学位论文, 2006. [49] ZHU P, XU Q, CHEN R, et al. Structural study of β-SiC (001) films on Si (001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100(4): 1634. [50] SUN Q, ZHU P, XU Q,et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101(3):1048. [51] SUN Q, YANG M, LI J,et al. Heteroepitaxial growth of thick 3C-SiC (110) films by laser CVD. Journal of the American Ceramic Society, 2019, 102(8): 4480. [52] LELY J A.The preparation of silicon carbide single crystal and the control of the type and amount of internal impurities.Detsch. Kerm. Ges, 1969, 32: 229. [53] HAMILTON D R.The growth of silicon carbide by sublimation.High Temperature Semiconductor, 1960: 45. [54] TAIROV Y M, TSVETKOV V F.Investigation of growth processes of ingots of silicon carbide single crystals.Journal of Crystal Growth, 1978, 43(2): 209. [55] CHAUSSENDE D, BAILLET F, CHARPENTIER L,et al. Continuous feed physical vapor transport: toward high purity and long boule growth of SiC. Journal of The Electrochemical Society, 2003, 150(10): 653. [56] MANTZARI A, MERCIER F, SOUEIDAN M,et al. Structural characterization of cf-pvt grown bulk 3C-SiC. Materials Science Forum, 2009, 600: 67. [57] SUN G L, GALBEN SANDULACHE I G. Improvements of the continuous feed-physical vapor transport technique (CF-PVT) for the seeded growth of 3C-SiC crystals.Silicon Carbide and Related Materials, 2010, 645: 63. [58] SEMMELROTH K, SCHULZE N, PENSL G.Growth of SiC polytypes by the physical vapour transport technique.Journal of Physics: Condensed Matter, 2004, 16(17): 1597. [59] SEMMELROTH K, KRIEGER M, PENSL G,et al. Growth of cubic SiC single crystals by the physical vapor transport technique. Journal of crystal growth, 2007, 308(2): 241. [60] LATU-ROMAIN L,CHAUSSENDE D,BALLOUD C,et al. Characterization of bulk< 111> 3C-SiC single crystals grown on 4H-SiC by the CF-PVT method. Materials Science Forum, 2006, 527: 99. [61] LATU-ROMAIN L, CHAUSSENDE D, CHAUDOUËT P,et al. Study of 3C-SiC nucleation on (0001) 6H-SiC nominal surfaces by the CF-PVT method. Journal of Crystal Growth, 2005, 275(1/2): E609. [62] TAIROV Y M, TSVETKOV V F, LILOV S K,et al. Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase. Journal of Crystal Growth, 1976, 36(1): 147. [63] VODAKOV Y A, ROENKOV A D, RAMM M G, et al. Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layer. Physica Status Solidi (b), 1997, 202(1): 177. [64] MOKHOV E N, RAMM M G, ROENKOV A D,et al. Growth of silicon carbide bulk crystals by the sublimation sandwich method. Materials Science and Engineering: B, 1997, 46(1/2/3): 317. [65] JOKUBAVICIUS V, HUANG H H, SCHIMMEL S,et al. Towards bulk-like 3C-SiC growth using low off-axis substrates. Materials Science Forum, 2013, 740: 275. [66] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Lateral enlargement growth mechanism of 3C-SiC on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2014, 14(12): 6514. [67] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Single domain 3C-SiC growth on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2015, 15(6): 2940. [68] VASILIAUSKAS, REMIGIJUS.Sublimation Growth and Performance of Cubic Silicon Carbide. Linköping University Electronic Press Ph. D. Thesis, 2012: 12-13. [69] SCHUH P, LAVIA F, MAUCERI M,et al. Growth of large-area, stress-free, and bulk-like 3C-SiC (100) using 3C-SiC-on-Si in vapor phase growth. Materials, 2019, 12(13): 2179. [70] HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals.Materials Science and Engineering: B, 1999, 61(62): 29. [71] WANG G B, LI H, SHENG D,et al. Research progress on growth of SiC single crystal by high temperature solution method. Journal of Synthetic Crystals, 2022, 51(1): 3. [72] GU P, LEI P, YE S,et al. Research progress on the growth of silicon carbide single crystal by top seed solution method and its key problems. Journal of Synthetic Crystals, 2024, 53(5): 741. [73] WANG G B, SHENG D, LI H,et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions. CrystEngComm, 2023, 25(4): 560. [74] YOSHIKAWA T, KAWANISHI S, TANAKA T.Solution growth of silicon carbide using Fe-Si solvent. Japanese Journal of Applied Physics, 2010, 49(5): 051302. [75] YAMAMOTO Y, HARADA S, SEKI K,et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Applied Physics Express, 2014, 7(6): 065501. [76] DAIKOKU H, KADO M, SEKI A,et al. Solution growth on concave surface of 4H-SiC crystal. Crystal Growth & Design, 2016, 16(3): 1256. [77] KAWANISHI S, SHIBATA H, YOSHIKAWA T.Contribution of dislocations in SiC seed crystals on the melt-back process in SiC solution growth.Materials, 2022, 15(5): 1796. [78] MERCIER F, KIMHAK O, LORENZZI J,et al. Is the liquid phase a viable approach for bulk growth of 3C-SiC? Materials Science Forum, 2010, 645: 67. [79] CHAUSSENDE D.Vapor phasevs. liquid phase: what is the best choice for the growth of bulk 3C-SiC crystals? AIP Conference Proceedings, 2010, 1292(1): 1. [80] FERRO G.Overview of 3C-SiC crystalline growth.Materials Science Forum, 2010, 645: 49. [81] WANG G B, SHENG D, YANG Y,et al. High-quality and wafer-scale cubic silicon carbide single crystals. Energy & Environmental Materials, 2023, 18: 12678. [82] SHENG D, WANG G, YANG Y,et al. Modeling and suppressing interfacial instability in growth of SiC from high-temperature solutions. Crystal Growth & Design, 2025, 25(4): 1211. [83] SCACE R I, SLACK G A.Solubility of carbon in silicon and germanium.The Journal of Chemical Physics, 1959, 30(6): 1551. [84] LIANG G Q, QIAN H, SU YL,et al. Review of solution growth techniques for 4H-SiC single crystal. China Foundry, 2023, 20(2): 159. [85] MITANI T, KOMATSU N, TAKAHASHI T,et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions. Journal of Crystal Growth, 2014, 401: 681. [86] NARUMI T, KAWANISHI S, YOSHIKAWA T,et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC. Journal of Crystal Growth, 2014, 408: 25. [87] MITANI T, KOMATSU N, TAKAHASHI T,et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution. Journal of Crystal Growth, 2015, 423: 45. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[3] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[4] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[5] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[6] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[7] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[8] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[9] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[10] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[11] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[12] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[13] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[14] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[15] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||