Journal of Inorganic Materials
WEN Shenhao1,2, PENG Dezhao1,2, LIN Zheyu1,2, GUO Xia1,2, HUANG Peixin1,2, ZHANG Zhizhen1,2
Received:
2024-11-22
Revised:
2025-03-04
About author:
WEN Shenhao, PhD candidate. E-mail: wenshh9@mail2.sysu.edu.cn
Supported by:
CLC Number:
WEN Shenhao, PENG Dezhao, LIN Zheyu, GUO Xia, HUANG Peixin, ZHANG Zhizhen. Interface Engineering for the Anode in Solid-state Lithium Batteries Based on LLZTO Electrolyte[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240492.
[1] 徐学笛. 化学电源的发展及展望. 化学工程与装备, 2008(2): 95. [2] XIE J, LU Y C.A retrospective on lithium-ion batteries.Nature Communications, 2020, 11: 2499. [3] 赵光金, 李晶晶, 胡玉霞, 等. 锂离子电池储能电站安全风险及应对策略. 电源技术, 2024, 48(12): 2343. [4] 徐琛. 固态锂电池复合固态电解质研究进展. 中外能源, 2023, 28(9): 18. [5] KIM A, WOO S, KANG M,et al. Research progresses of garnet-type solid electrolytes for developing all-solid-state Li batteries. Frontiers in Chemistry, 2020, 8: 468. [6] WU J, CHEN L, SONG T,et al. A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3-xLa2/3-xTiO3. Functional Materials Letters, 2017, 10(3): 1730002. [7] LI C, LI R, LIU K,et al. NaSICON: a promising solid electrolyte for solid-state sodium batteries. Interdisciplinary Materials, 2022, 1(3): 396. [8] ZHAO Y, DAEMEN L L.Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134(36): 15042. [9] AIMI A, ONODERA H, SHIMONISHI Y, et al. High Li-ion conductivity in pyrochlore-type solid electrolyte Li2-xLa(1+x)/3M2O6F (M= Nb, Ta). Chemistry of Materials, 2024, 36(8): 3717. [10] WANG C, FU K, KAMMAMPATA S P,et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020, 120(10): 4257. [11] MURUGAN R, THANGADURAI V, WEPPNER W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angewandte Chemie International Edition, 2007, 46(41): 7778. [12] CHEN R, NOLAN A M, LU J,et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule, 2020, 4(4): 812. [13] CHENG E J, DUAN H, WANG M J,et al. Li-stuffed garnet solid electrolytes: current status, challenges, and perspectives for practical. Energy Storage Materials, 2024, 75: 103970. [14] 张念, 任国玺, 章辉, 等. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 224. [15] HAN X, GONG Y, FU K,et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017, 16(5): 572. [16] PORZ L, SWAMY T, SHELDON B W,et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Advanced Energy Materials, 2017, 7(20): 1701003. [17] SHARAFI A, KAZYAK E, DAVIS A L,et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chemistry of Materials, 2017, 29(18): 7961. [18] DUAN H, CHEN W P, FAN M,et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angewandte Chemie, 2020, 132(29): 12167. [19] BI Z, SUN Q, JIA M,et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Advanced Functional Materials, 2022, 32(52): 2208751. [20] RUAN Y, LU Y, LI Y,et al. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Advanced Functional Materials, 2021, 31(5): 2007815. [21] LEE S, LEE K S, KIM S, ,et al. Design of a lithiophilic. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Science Advances, 2022, 8(30): eabq0153 [22] BI Z, HUANG W, MU S,et al. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy, 2021, 90: 106498. [23] BI Z, SHI R, LIU X,et al. In situ conversion reaction triggered alloy@antiperovskite hybrid layers for lithiophilic and robust lithium/garnet interfaces. Advanced Functional Materials, 2023, 33(43): 2307701. [24] ALEXANDER G V, SHI C, O’NEILL J,et al. Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture. Nature Materials, 2023, 22(9): 1136. [25] FENG W, DONG X, LI P,et al. Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. Journal of Power Sources, 2019, 419: 91. [26] LI Z, ZHENG W, LU G,et al. Superionic conductor enabled composite lithium with high ionic conductivity and interfacial wettability for solid-state lithium batteries. Advanced Functional Materials, 2024, 34(12): 2309751. [27] HU X, YU J, WANG Y,et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries. Advanced Materials, 2024, 36(7): 2308275. [28] CHEN B, ZHANG J, ZHANG T,et al. Directly using Li2CO3 as a lithiophobic interlayer to inhibit Li dendrites for high-performance solid-state batteries. ACS Energy Letters, 2023, 8(5): 2221. [29] SHI K, WAN Z, YANG L,et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(29): 11784. [30] LU Y, HUANG X, RUAN Y,et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. Journal of Materials Chemistry A, 2018, 6(39): 18853. [31] MA C, JIANG W, DUAN Q,et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Advanced Energy Materials, 2024, 14(25): 2400202. [32] LI Y, LI J, XIAO H,et al. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Advanced Functional Materials, 2023, 33(14): 2213905. [33] PENG Z, REN F, YANG S,et al. A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy, 2019, 59: 110. [34] SHI X, PANG Y, WANG B,et al. In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Materials Today Nano, 2020, 10: 100079. [35] CHEN Y, OUYANG C, SONG L,et al. Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. The Journal of Physical Chemistry C, 2011, 115(14): 7044. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[4] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[5] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[6] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[7] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[8] | SU Dongliang, CUI Jin, ZHAI Pengbo, GUO Xiangxin. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802-808. |
[9] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[10] | LI Wenkai, ZHAO Ning, BI Zhijie, GUO Xiangxin. Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property [J]. Journal of Inorganic Materials, 2022, 37(2): 189-196. |
[11] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[12] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
[13] | LIU Yong, BAI Haijun, ZHAO Qizhi, YANG Jinge, LI Yujie, ZHENG Chunman, XIE Kai. Storage Aging Mechanism of LiNi0.8Co0.15Al0.05O2/Graphite Li-ion Batteries at High State of Charge [J]. Journal of Inorganic Materials, 2021, 36(2): 175-180. |
[14] | WANG Yanan, LI Hua, WANG Zhengkun, LI Qingfeng, LIAN Chen, HE Xin. Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress [J]. Journal of Inorganic Materials, 2020, 35(10): 1071-1087. |
[15] | Jian-Huang KE, Kai XIE, Yu HAN, Wei-Wei SUN, Shi-Qiang LUO, Jin-Feng LIU. Morphology Controlling of the High-voltage Cathode Materials with Different Co-solvents [J]. Journal of Inorganic Materials, 2019, 34(6): 618-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||