Journal of Inorganic Materials
LIU Jiangping1,2,3, GUAN Xin1,2,3, TANG Zhenjie1,2,3, ZHU Wenjie1,2,3, LUO Yongming2,3,4
Received:
2024-12-10
Revised:
2025-03-22
About author:
LIU Jiangping (1991-), male, associate professor. E-mail: liujiangping@kust.edu.cn
Supported by:
CLC Number:
LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240511.
[1] 苏皓琳, 毕玉赞, 王一航. 空气中挥发性有机污染物的危害及处理工艺综述. 清洗世界, 2024, 40(8): 61. [2] 曲家福, 李佐习. 空气中挥发性有机污染物的危害及处理工艺综述. 苏州科技大学学报: 自然科学版, 2022, 39(3): 1. [3] 赵飞, 潘帅, 张冲冲. 石油化工行业VOCs治理技术综述. 山东化工, 2024, 53(4): 274. [4] 高鑫, 荆博宇, 吴琳, 等. 机动车尾气VOCs排放特征及影响因素研究进展. 环境科学与技术, 2023, 46(11): 69. [5] 潘玉梅, 张敏. 化工企业VOCs治理技术及对策研究. 山东化工, 2024, 53(2): 223. [6] DUAN X X, ZHAO T, YANG Z W,et al. Oxygen activation-boosted manganese oxide with unique interface for chlorobenzene oxidation: unveiling the roles and dynamic variation of active oxygen species in heterogeneous catalytic oxidation process. Applied Catalysis B: Environmental, 2023, 331: 122719. [7] CHAI G T, ZHANG W D, LIOTTA L F,et al. Total oxidation of propane over Co3O4-based catalysts: elucidating the influence of Zr dopant. Applied Catalysis B: Environmental, 2021, 298: 120606. [8] XING X, LI N, CHENG J,et al. Hydrotalcite-derived CuxMg3-xAlO oxides for catalytic degradation of n-butylamine with low concentration NO and pollutant-destruction mechanism. Industrial & Engineering Chemistry Research, 2019, 58(22): 9362. [9] WU X Q, HAN R, LIU Q L,et al. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catalysis Science & Technology, 2021, 11(16): 5374. [10] CUI W, CHEN H W, LIU D Q,et al. Mn/co redox cycle promoted catalytic performance of mesoporous SiO2-confined highly dispersed LaMnxCo1-xO3 perovskite oxides in n-butylamine combustion. ChemistrySelect, 2020, 5(28): 8504. [11] HE C, CHENG J, ZHANG X,et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 2019, 119(7): 4471. [12] WU P, JIN X J, QIU Y C,et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environmental Science & Technology, 2021, 55(8): 4268. [13] 王威. 化工行业VOCs废气治理措施分析. 石化技术, 2023, 30(9): 10. [14] 杨成. 贵阳市机动车大气污染物排放清单的初步研究. 贵州: 贵州大学硕士学位论文, 2021. [15] 徐杏, 肖华, 周昕, 等. 畜禽场恶臭VOCs的产生及防控技术进展. 环境工程, 2020, 38(8): 180. [16] RAJ I, GUPTA A, BANSIWAL A,et al. A bench scale study on the startup, performance and optimization of the biological degradation of obnoxious air containing trimethylamine. Journal of Environmental Chemical Engineering, 2020, 8(1): 103529. [17] 牛真真, 孔少飞, 严沁, 等. 薪柴和经济作物秸秆燃烧VOCs排放特征. 环境科学, 2020, 41(3): 1107. [18] 张靳杰. 武汉市机动车尾气VOCs和颗粒物排放特征研究. 武汉: 华中科技大学硕士学位论文, 2019. [19] 陈天增, 葛艳丽, 刘永春, 等. 我国机动车排放VOCs及其大气环境影响. 环境科学, 2018, 39(2): 478. [20] 郭文凯, 刘镇, 刘文博, 等. 兰州生物质燃烧VOCs排放特征及其大气环境影响. 中国环境科学, 2019, 39(1): 40. [21] 韩昕, 李相贤, 高闽光, 等. 基于SOF-FTIR的机场VOCs污染排放监测分析. 量子电子学报, 2019, 36(1): 101. [22] 黄碧捷. 武汉市秸秆燃烧VOCs排放估算及管理对策. 环境科学, 2013, 34(12): 4543. [23] 孙西勃, 廖程浩, 曾武涛, 等. 广东省秸秆燃烧大气污染物及VOCs物种排放清单. 环境科学, 2018, 39(9): 3995. [24] 张启钧, 吴琳, 刘明月, 等. 南京市机动车排放VOCs的污染特征与健康风险评价. 中国环境科学, 2016, 36(10): 3118. [25] ZHOU L L, MA C, HORLYCK J,et al. Development of pharmaceutical VOCs elimination by catalytic processes in China. Catalysts, 2020, 10(6): 668. [26] 程东风, 史彦辉, 张明成, 等. 煤基甲醇中三甲胺类杂质生成机理及脱除方法. 中氮肥, 2017(4): 39. [27] 胡丽雅. 苏码罐采样-气相色谱-质谱法测定环境空气中三甲胺的含量. 理化检验-化学分册, 2023, 59(4): 394. [28] 杨睿颖, 朱秋劲, 白晶, 等. 三甲胺表面增强拉曼光谱的密度泛函理论研究. 化学研究与应用, 2021, 33(5): 920. [29] YAN C, ZHONG M F, HAN J Q,et al. Efficient degradation of trimethylamine in gas phase by petal-shaped Co-MoS2 catalyst in the photo-electrochemical system. Chemical Engineering Journal, 2021, 405: 127034. [30] 吕道飞, 林洁玲, 许锋, 等. 锌基金属有机框架材料对三甲胺的吸附性能研究. 南方水产科学, 2022, 18(6): 110. [31] QIU M, CHEN C, LI W.Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous VOCs.Catalysis Today, 2015, 258: 132. [32] ZHANG K, DING H L, PAN W G,et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environmental Science & Technology, 2022, 56(13): 9220. [33] 郭菊花. 生物法在挥发性有机废气处理中的应用研究. 清洗世界, 2023, 39(12): 91. [34] 李春生. 热力燃烧法处理电子元件厂VOCs研究. 广州化工, 2015, 43(3): 141. [35] 潘智超. 多相吸收法处理VOCs气体技术研究. 青岛: 中国石油大学(华东)硕士学位论文, 2020. [36] 帅启凡, 董小平, 魏桃, 等. 工业废气中VOCs燃烧处理方法及发展趋势. 2020中国环境科学学会科学技术年会, 南京, 2020. [37] 张胜, 王忠海, 文旭, 等. 催化-醚化联合装置污水预处理站VOCs的处理. 化工技术与开发, 2023, 52(10): 91. [38] WANG F, HE G Z, ZHANG B,et al. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catalysis, 2019, 9(2): 1437. [39] 王嘉, 尤瑞, 千坤, 等. Cl-改性对Ag/Al2O3催化剂结构及其催化C3H6-SCR和H2/C3H6-SCR反应性能的影响. 催化学报, 2021, 42(12): 2242. [40] GUO X H, DONG C X, GAO M,et al. Crystal-facet-dependent activity and N2 yield of Ag/CeO2 catalysts for catalytic oxidation of N, N-Dimethylformamide. Applied Catalysis B: Environmental, 2024, 341: 123286. [41] HUANG F Y, YE D S, GUO X H,et al. Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N, N-dimethylformamide. Catalysis Science & Technology, 2020, 10(8): 2473. [42] ZHANG Y, LU J C, ZHANG L M,et al. Investigation into the catalytic roles of oxygen vacancies during gaseous styrene degradation process via CeO2 catalysts with four different morphologies. Applied Catalysis B: Environmental, 2022, 309: 121249. [43] ZHANG Y Y, WANG Y X, LIU Y,et al. Insight into the role of cerium in the enhanced performances during catalytic combustion of acetonitrile over core-shell-like Cu-Ce/ZSM-5 catalysts. ACS ES&T Engineering, 2022, 2(9): 1709. [44] 刘凯鹏, 卢文新. 单原子催化的工业化挑战及现状. 化肥设计, 2023, 61(1): 1. [45] 刘佳程, 马廷灿. 单原子催化国际研究态势分析. 世界科技研究与发展, 2022, 44(5): 643. [46] 庄嘉豪, 王定胜. 单原子催化的关键进展与未来挑战. 高等学校化学学报, 2022, 43(5): 31. [47] WANG Y W, ZHANG J, ZHANG Y F,et al. Single Fe atom-anchored manganese dioxide for efficient removal of volatile organic compounds in refrigerator. Nano Research, 2024, 17(5): 3927. [48] YE D S, CHENG L, GAO Y Z,et al. Modulating the Mn-O strength of OMS-2 by alkali metal doping for the catalytic oxidation of N,N-dimethylformamide. Separation and Purification Technology, 2024, 351: 128049. [49] XING X, LI N, LIU D D,et al. Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N, N-Dimethylformamide. Frontiers of Environmental Science & Engineering, 2022, 16(10): 125. [50] LU Y, HU C H, ZHANG W X,et al. Promoting the selective catalytic oxidation of diethylamine over MnOx/ZSM-5 by surface acid centers. Applied Surface Science, 2020, 521: 146348. [51] HU C H, FANG C T, LU Y,et al. Selective oxidation of diethylamine on CuO/ZSM-5 catalysts: the role of cooperative catalysis of CuO and surface acid sites. Industrial & Engineering Chemistry Research, 2020, 59(20): 9432. [52] ZHANG R D, LI P X, XIAO R,et al. Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Applied Catalysis B: Environmental, 2016, 196: 142. [53] WANG Y X, YING Q J, ZHANG Y Y,et al. Reaction behaviors of CH3CN catalytic combustion over CuCeO x-HZSM-5 composite catalysts: the mechanism of enhanced N2 selectivity. Applied Catalysis A: General, 2020, 590: 117373. [54] ZHANG Y Y, WANG Y X, LIU Y,et al. Catalytic combustion of acetonitrile over CuCeO x-HZSM-5 composite catalysts with different mass ratios: the synergism between oxidation and hydrolysis reactions. Journal of Colloid and Interface Science, 2021, 584: 193. [55] 文红. 单原子掺杂过渡金属基催化剂上NO选择性还原的第一性原理研究. 长春: 吉林大学博士学位论文, 2021. [56] 柳鑫淼. 单/双原子锚定二维C2N材料降解N2O的理论研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2023. [57] ZHANG R D, SHI D J, LIU N,et al. Catalytic purification of acrylonitrile-containing exhaust gases from petrochemical industry by metal-doped mesoporous zeolites. Catalysis Today, 2015, 258: 17. [58] ZHANG R D, SHI D J, LIU N,et al. Mesoporous SBA-15 promoted by 3d-transition and noble metals for catalytic combustion of acetonitrile. Applied Catalysis B: Environmental, 2014, 146: 79. [59] XING X, ZHAO T, CHENG J,et al. Promotional effect of Cu additive for the selective catalytic oxidation of n-butylamine over CeZrOx catalyst. Chinese Chemical Letters, 2022, 33(6): 3065. [60] XING X, LI N, SUN Y G,et al. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts. Catalysis Today, 2020, 339: 192. [61] MENG L W, MA W H, ZHANG S L,et al. Isolated CuO and medium strong acid on CuO/Nb2O5-H catalyst for efficient enhancement of triethylamine selective catalytic oxidation. Journal of Environmental Chemical Engineering, 2023, 11(4): 110258. [62] HE L C, XU H H, LENG X Y,et al. Boosting diethylamine selective oxidation over CuO/ZSM-5 catalyst by CeO2 modification. Fuel, 2023, 342: 127792. [63] XU H H, XIAN W Y, ZHAO X,et al. Selective catalytic oxidation of DMF over Cu-Ce/H-MOR by modulating the surface active sites. Journal of hazardous materials, 2024, 474: 134829. [64] YAN D J, CHEN Z H, MA M D,et al. Hierarchical Cu-Mn/ZSM-5 with boosted activity and selectivity for n-butylamine destruction: synergy of pore structure and surface acidity. Applied Catalysis A: General, 2022, 636: 118579. [65] XU J W, LIU Q Y, CHEN Z H,et al. Efficient selective combustion of n-butylamine on hierarchical Cu-Mn/SAPO-34 catalysts: the effect of mesoporosity and acidity. Applied Catalysis A: General, 2023, 665: 119354. [66] MA M D, XU S, LIU Q Y,et al. Rationally engineering a CuO/Pd@SiO2 core-shell catalyst with isolated bifunctional Pd and Cu active sites for n-butylamine controllable decomposition. Environmental Science & Technology, 2022, 56(22): 16189. [67] ZHANG Y Y, WANG Y X, LIU Y,et al. The reaction behaviors of acetonitrile and ethyl acetate simultaneous degradation over Cu-Ce/ZSM-5 catalyst. Applied Surface Science, 2023, 609: 155190. [68] PENG H G, DONG T, YANG S Y,et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nature Communications, 2022, 13(1): 295. [69] ZHANG Y K, WANG Y H, SU K B,et al. The influence of the oxygen vacancies on the Pt/TiO2 single-atom catalyst—a DFT study. Journal of Molecular Modeling, 2022, 28(6): 175. [70] CHEN X Y, YANG S, REN B P,et al. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: esterification and decarboxylation dual pathway. Tetrahedron, 2021, 96: 132377. [71] 沈宏宇. MFI沸石分子筛的高效合成及其催化性能研究. 大连: 大连理工大学硕士学位论文, 2021. [72] 孙晶晶. 2-甲基萘酰化反应中改性Hβ分子筛催化性能的研究. 北京: 北京石油化工学院硕士学位论文, 2022. [73] 王伟都. 沸石分子筛封装Ag纳米粒子的制备、结构分析及催化性能的研究. 沈阳: 沈阳师范大学硕士学位论文, 2021. [74] 韩文鹏, 王淑娟, 耿付江, 等. 介孔分子筛的合成、改性及催化应用进展. 广州化工, 2025, 53(1): 4. [75] FONZEU MONGUEN C K, DANIEL S, TIAN Z Y. Low-temperature deep oxidation of N, N-dimethylformamide (DMF) over CeCu binary oxides.Catalysis Science & Technology, 2023, 13(12): 3517. [76] ZHU W J, TANG L, LU J C, et al. Research progress in catalytic oxidation of volatile organic compounds by perovskite oxides. Journal of Inorganic Materials, DOI: 10.15541/jim20240333. [77] 沈方燮, 万翔, 王卫超. 基于锰基YMn2O5催化剂室温降解挥发性有机化合污染物. 应用化学, 2023, 40(6): 888. [78] HU B T, SUN K A, ZHUANG Z W,et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties. Advanced Materials, 2022, 34(16): 2107721. [79] 王愉雄. ZnO基催化剂光催化选择性氧化甲烷制备高值化学品研究. 杭州: 浙江大学博士学位论文, 2024. [80] 刘璐. 基于单原子铁修饰氮化碳光催化—自Fenton协同体系的构建及其去除NO性能研究. 武汉: 华中农业大学硕士学位论文, 2024. [81] LIU N, YUAN X N, ZHANG R D,et al. Mechanistic insight into selective catalytic combustion of HCN over Cu-BEA: influence of different active center structures. Physical Chemistry Chemical Physics, 2017, 19(35): 23960. [82] CHEN D, SHI J, SHEN H Y.High-dispersed catalysts of core-shell structured Au@SiO2 for formaldehyde catalytic oxidation.Chemical Engineering Journal, 2020, 385: 123887. |
[1] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[2] | LI Na, CAO Ruixiao, WEI Jin, ZHOU Han, XIAO Hongmei. Performance and Influencing Factors of Iron-based Catalyst for Ortho to Para Hydrogen Conversion [J]. Journal of Inorganic Materials, 2025, 40(1): 47-52. |
[3] | LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition [J]. Journal of Inorganic Materials, 2025, 40(1): 53-60. |
[4] | LIU Lei, GUO Ruihua, WANG Li, WANG Yan, ZHANG Guofang, GUAN Lili. Oxygen Reduction Reaction on Pt3Co High-index Facets by Density Functional Theory [J]. Journal of Inorganic Materials, 2025, 40(1): 39-46. |
[5] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[6] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[7] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[8] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[9] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[10] | WANG Lei, LI Jianjun, NING Jun, HU Tianyu, WANG Hongyang, ZHANG Zhanqun, WU Linxin. Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism [J]. Journal of Inorganic Materials, 2023, 38(4): 469-476. |
[11] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[12] | YANG Daihui, SUN Tian, TIAN Hexin, SHI Xiaofei, MA Dongwei. Iron-nitrogen-codoped Mesoporous Carbon: Facile Synthesis and Catalytic Performance of Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2023, 38(11): 1309-1315. |
[13] | ZHANG Ruiyang, WANG Yi, OU Bowen, ZHOU Ying. α-Ni(OH)2 Surface Hydroxyls Synergize Ni3+ Sites for Catalytic Formaldehyde Oxidation [J]. Journal of Inorganic Materials, 2023, 38(10): 1216-1222. |
[14] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[15] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||