Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1005-1016.DOI: 10.15541/jim20230132
Special Issue: 【能源环境】钙钛矿(202409); 【信息功能】神经形态材料与器件(202409)
• REVIEW • Previous Articles Next Articles
GUO Huajun1,2(), AN Shuailing2,3, MENG Jie2,3, REN Shuxia3, WANG Wenwen2, LIANG Zishang1,2, SONG Jiayu2,3, CHEN Hengbin2,3, SU Hang2,3, ZHAO Jinjin2()
Received:
2023-03-16
Revised:
2023-05-23
Published:
2023-09-20
Online:
2023-06-16
Contact:
ZHAO Jinjin, professor. E-mail: jinjinzhao2012@163.comAbout author:
GUO Huajun (1983-), male, PhD candidate. E-mail: ghjfriend@foxmail.com
Supported by:
CLC Number:
GUO Huajun, AN Shuailing, MENG Jie, REN Shuxia, WANG Wenwen, LIANG Zishang, SONG Jiayu, CHEN Hengbin, SU Hang, ZHAO Jinjin. Research Progress of Photoelectric Resistive Switching Mechanism of Halide Perovskite[J]. Journal of Inorganic Materials, 2023, 38(9): 1005-1016.
Fig. 2 CFs of 3D perovskite RS device[19,27,30⇓-32,37,41-42] (a) Illustration of Au/CsPbBr3/ITO RS device structure[27]; (b) I−V response of Al/CsPbClxBr3−x/ITO/PET RS device in semilogarithmic scale[41]; (c) Alignment of bromide vacancies and silver atoms in On state of ITO/Cs2AgBiBr6/Au RS device[42]; (d) Pb element oxidation and reduction peaks at cyclic voltammetry (CV) curve of Al@MAPbI3/Al; (e) Pb metallic filaments formation in Set process and dissolution in the Reset process[30]; (f) Perovskite thickness-dependent competition between metallic and iodine vacancy CFs of Ag/MAPbI3/FTO RS device[37]; (g) Hybrid filaments formation and dissolution of Ag/CsPbBr3 QDs:GO/ITO device[19]; (h) Intensity of Cu element on switched and unswitched Cu/MA3Bi2I9/ITO devices[31]; (i) Band diagram of Ag/PMMA/CsPbI3/Pt device and thermally activated Ag ions hopping in CsPbI3[32]; (j) Schematic diagram of ITO/Cs2AgBiBr6/Au RS device; (k) Atomic force microscope images of CFs in Off (left) and On (right) states of Fig 2(j); (l) Element distributions of Br and Ag in Off and On states in Fig 2(j)[42]. ITO: Indium-tin oxide; PET: Polyethylene terephthalate; MA: Methylammonium; QDs: Quantum dots; GO: Graphene oxide; PMMA: Poly(methylmethacrylate)
Fig. 3 CFs of 2D halide perovskite RS device[44-45] (a) CFs mechanism of FTO/[(TZ-H)2(PbBr4)]n/Ag device; (b) I-V curve with conduction mechanism in semilogarithmic scale under positive-voltage sweep at 30 ℃ with inset showing schematic illustration of FTO/[(TZ-H)2(PbBr4)]n/Ag device structure; (c) I-V curves of FTO/[(TZ-H)2(PbBr4)]n/Ag device at different temperatures[45]; (d) Ternary resistive switching I-V curves of Al/MA2PbI2 (SCN)2/ITO device; (e) I-V curve with conduction mechanism in semilogarithmic scale with inset showing schematic illustration of Al/MA2PbI2 (SCN)2/ITO device structure; (f) CFs mechanism of Al/MA2PbI2 (SCN)2/ITO device[44]. Colorful figures are available on website
Fig. 4 CFs of perovskite RS device under light illumination[51-52] (a) CFs formation and dissolution of ITO/Ag/MAPbI3 quantum wires/Al device under light illumination[51]; (b) Dynamic bending fatigue I-V curves of mica/AgNWs@AZO/PEDOT:PSS/CsPbBr3 device under light illumination; (c) Three-dimensional tomography images of PEDOT: PSS/CsPbBr3 nanocrystal overlaid by Kelvin-probe force microscopy (KPFM) signals under (c1) dark condition and (c2) light illumination, and statistical variations of (c3) height and (c4) surface potential from Figs. (c1, c2); (d) Hybrid filaments formation and dissolution of mica/AgNWs@AZO/PEDOT:PSS/CsPbBr3 device under light illumination[52]. PEDOT: Poly(3,4-ethylenedioxythiophene); PSS: Poly(styrenesulfonate). Colorful figures are available on website
Fig. 5 Energy level matching of perovskite RS device[60⇓⇓⇓-64] (a) Energy level matching and the formation and dissolution of corresponding CFs of Ag/PMMA@CsPbI3/FTO device[60]; (b) Depletion width varied in p-type perovskite CsSnI3 layer due to Sn vacancies under an electric field[61]; (c) Schottky barrier formed at MAPbI3/TiO2 interface and resulting asymmetry I-V curve of Au/MAPbI3/TiO2/FTO device[62]; (d) RS loops of Al/Cs0.05(FAxMA1−x)0.95PbIyBr3−y/TiO2/FTO structure under dark condition and light illumination; (e) Depletion region at Cs0.05(FAxMA1−x)0.95PbIyBr3−y/TiO2 interface in low resistance state (LRS) and high resistance state (HRS) under illumination[63]; (f) Light-induced RS behaviours of Ni/ZnO/CsPbBr3/FTO device[64]. Colorful figures are available on website
Fig. 6 Application of perovskite-based RS devices[24,30,79,83,86,92-93] (a) CsPbBr3 quantum dots based phototransistor emulating human visual systems[92]; (b) MAPbI3 based synaptic transistor emulating a biological synapse[79]; (c) AgBiI4 used in artificial sensory neuron system emulating biological tactile sensing system[93]; (d) Schematic illustration of Ag/SrTiO3/CsPbBr3/Au device structure; (e) Photodetector, photomemory, memory mode and breakdown of Ag/SrTiO3/CsPbBr3/Au device[83]; (f, g) Schematic illustration of woven fibrous crosspoint RS devices with the architecture of Al@MAPbI3/Al[30]; (h) Al/CH3NH3SnCl3/polyvinyl alcohol/ITO/PET devices achieving logic “OR” and “AND” gate[86]; (i) Physical unclonable functions (memPUFs) of PrPyr[PbI3] RS devices[24]. PrPyr[PbI3]: Propyl pyridinium lead iodide
[1] |
WANG S Y, LIU L, GAN L R, et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nature Communications, 2021, 12: 53.
DOI PMID |
[2] |
ZHANG B, CHEN W L, ZENG J M, et al. 90% yield production of polymer nano-memristor for in-memory computing. Nature Communications, 2021, 12(1): 1984.
DOI PMID |
[3] |
DUBOST V, CREN T, VAJU C, et al. Resistive switching at the nanoscale in the mott insulator compound GaTa4Se8. Nano Letters, 2013, 13(8): 3648.
DOI PMID |
[4] |
GAO S, SONG C, CHEN C, et al. Dynamic processes of resistive switching in metallic filament-based organic memory devices. The Journal of Physical Chemistry C, 2012, 116(33): 17955.
DOI URL |
[5] |
YOO E J, KIM J H, SONG J H, et al. Resistive switching characteristics of the Cr/ZnO/Cr structure. Journal of Nanoscience and Nanotechnology, 2013, 13(9): 6395.
PMID |
[6] |
REN S X, LI Z H, LIU X M, et al. Oxygen migration induced effective magnetic and resistive switching boosted by graphene quantum dots. Journal of Alloys and Compounds, 2021, 863: 158339.
DOI URL |
[7] |
REN S X, LI Z H, TANG L H, et al. Conduction response in highly flexible nonvolatile memory devices. Advanced Electronic Materials, 2020, 6(5): 2000151.
DOI URL |
[8] |
KANG K J, HU W, TANG X S. Halide perovskites for resistive switching memory. The Journal of Physical Chemistry Letters, 2021, 12(48): 11673.
DOI URL |
[9] |
CHUA L O. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507.
DOI URL |
[10] |
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found. Nature, 2008, 453(7191): 80.
DOI |
[11] |
CHUA L. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, 29(10): 104001.
DOI URL |
[12] |
ZHANG C, LI Y, MA C L, et al. Recent progress of organic-inorganic hybrid perovskites in RRAM, artificial synapse, and logic operation. Small Science, 2022, 2(2): 2100086.
DOI URL |
[13] | REN S X, YANG Z, AN S L, et al. High-efficiency photoelectric regulation of resistive switching memory in perovskite quantum dots. Acta Physico-Chimica Sinica, 2023, 3(9): 2301033. |
[14] |
YOO E J, LYU M, YUN J H, et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices. Advanced Materials, 2015, 27(40): 6170.
DOI URL |
[15] |
LIU Q, GAO S, XU L, et al. Nanostructured perovskites for nonvolatile memory devices. Chemical Society Reviews, 2022, 51(9): 3341.
DOI URL |
[16] |
LAI H J, ZHOU Y, ZHOU H B, et al. Photoinduced multi-bit nonvolatile memory based on a van der Waals heterostructure with a 2D-perovskite floating gate. Advanced Materials, 2022, 34(19): 2110278.
DOI URL |
[17] |
MA F M, ZHU Y B, XU Z W, et al. Optoelectronic perovskite synapses for neuromorphic computing. Advanced Functional Materials, 2020, 30(11): 1908901.
DOI URL |
[18] |
DI J Y, DU J H, LIN Z H, et al. Recent advances in resistive random access memory based on lead halide perovskite. InfoMat, 2021, 3(3): 293.
DOI URL |
[19] |
LIU X M, REN S X, LI Z H, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Advanced Functional Materials, 2022, 32(38): 2202951.
DOI URL |
[20] |
PARK H L, LEE T W. Organic and perovskite memristors for neuromorphic computing. Organic Electronics, 2021, 98: 106301.
DOI URL |
[21] |
XUE Z Y, XU Y C, JIN C X, et al. Halide perovskite photoelectric artificial synapses: materials, devices, and applications. Nanoscale, 2023, 15(10): 4653.
DOI URL |
[22] | FANG Y T, ZHAI S B, CHU L, et al. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Applied Materials & Interfaces, 2021, 13(15): 17141. |
[23] |
THIEN G S H, AB RAHMAN M, YAP B K, et al. Recent advances in halide perovskite resistive switching memory devices: a transformation from lead-based to lead-free perovskites. ACS Omega, 2022, 7(44): 39472.
DOI PMID |
[24] |
JOHN R A, SHAH N, VISHWANATH S K, et al. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nature Communications, 2021, 12: 3681.
DOI PMID |
[25] |
HAO D D, LIU D P, ZHANG J Y, et al. Lead-free perovskites-based photonic synaptic devices with logic functions. Advanced Materials Technologies, 2021, 6(12): 2100678.
DOI URL |
[26] |
LI M, XIONG Z Y, SHAO S S, et al. Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon, 2021, 176: 592.
DOI URL |
[27] |
ABBAS G, HASSAN M, KHAN Q, et al. A low power- consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Advanced Electronic Materials, 2022, 8(9): 2101412.
DOI URL |
[28] |
LIU B L, LAI J N, WU D F, et al. High-performance resistive random access memories based on two-dimensional HAPbI4 organic-inorganic hybrid perovskite. The Journal of Physical Chemistry Letters, 2022, 13(33): 7653.
DOI URL |
[29] |
LIN Q Q, HU W, ZANG Z G, et al. Transient resistive switching memory of CsPbBr3 thin films. Advanced Electronic Materials, 2018, 4(4): 1700596.
DOI URL |
[30] |
SHU P, CAO X F, DU Y Q, et al. Resistive switching performance of fibrous crosspoint memories based on an organic-inorganic halide perovskite. Journal of Materials Chemistry C, 2020, 8(37): 12865.
DOI URL |
[31] |
PODDAR S, ZHANG Y T, ZHU Y Y, et al. Optically tunable ultra-fast resistive switching in lead-free methyl-ammonium bismuth iodide perovskite films. Nanoscale, 2021, 13(12): 6184.
DOI PMID |
[32] |
HAN J S, LE Q V, CHOI J, et al. Air-stable cesium lead iodide perovskite for ultra-low operating voltage resistive switching. Advanced Functional Materials, 2018, 28(5): 1705783.
DOI URL |
[33] |
ZHENG Y D, LUO F F, RUAN L X, et al. A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application. Journal of Alloys and Compounds, 2022, 909: 164613.
DOI URL |
[34] |
LIU Z H, CHENG P P, LI Y F, et al. Multilevel halide perovskite memristors based on optical & electrical resistive switching effects. Materials Chemistry and Physics, 2022, 288: 126393.
DOI URL |
[35] |
LI Y F, CHENG P P, ZHOU L Y, et al. Light-induced nonvolatile resistive switching in Cs0.15FA0.85PbI3-xBrx perovskite-based memristors. Solid-State Electronics, 2021, 186: 108166.
DOI URL |
[36] | CAO X F, HAN Y Z, ZHOU J K, et al. Enhanced switching ratio and long-term stability of flexible RRAM by anchoring polyvinylammonium on perovskite grains. ACS Applied Materials & Interfaces, 2019, 11(39): 35914. |
[37] |
SUN Y M, TAI M Q, SONG C, et al. Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device. The Journal of Physical Chemistry C, 2018, 122(11): 6431.
DOI URL |
[38] |
PARAMANIK S, MAITI A, CHATTERJEE S, et al. Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Advanced Electronic Materials, 2022, 8(1): 2100237.
DOI URL |
[39] | GEORGE T, MURUGAN A V. Improved performance of the Al2O3-protected HfO2-TiO2 base layer with a self-assembled CH3NH3PbI3 heterostructure for extremely low operating voltage and stable filament formation in nonvolatile resistive switching memory. ACS Applied Materials & Interfaces, 2022, 14(45): 51066. |
[40] |
PARK Y, LEE J S. Metal halide perovskite-based memristors for emerging memory applications. The Journal of Physical Chemistry Letters, 2022, 13(24): 5638.
DOI URL |
[41] |
PAUL T, SARKAR P K, MAITI S, et al. Multilevel programming and light-assisted resistive switching in a halide-tunable all- inorganic perovskite cube for flexible memory devices. ACS Applied Electronic Materials, 2020, 2(11): 3667.
DOI URL |
[42] |
CHENG X F, QIAN W H, WANG J, et al. Environmentally robust memristor enabled by lead-free double perovskite for high- performance information storage. Small, 2019, 15(49): 1905731.
DOI URL |
[43] | SUN Y M, SONG C, YIN J, et al. Guiding the growth of a conductive filament by nanoindentation to improve resistive switching. ACS Applied Materials & Interfaces, 2017, 9(39): 34064. |
[44] |
CHENG X F, HOU X, ZHOU J, et al. Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance. Small, 2018, 14(12): 1703667.
DOI URL |
[45] |
SONG K Y, CHEN B J, LIN X L, et al. Thermal enhanced resistive switching performance of <100>-oriented perovskite [(TZ-H)2(PbBr4)]n with high working temperature: a triazolium/(PbBr4)n2n- interfacial interaction insight. Advanced Electronic Materials, 2022, 8(11): 2200537.
DOI URL |
[46] |
WANG Z P, LIN Q Q, CHMIEL F P, et al. Efficient ambient- air-stable solar cells with 2D-3D heterostructured butylammonium- caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2(9): 17135.
DOI URL |
[47] |
LIU Y C, YE H C, ZHANG Y X, et al. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465.
DOI URL |
[48] |
DI J Y, LIN Z H, SU J, et al. Two-dimensional (C6H5C2H4NH3)2PbI4 perovskite single crystal resistive switching memory devices. IEEE Electron Device Letters, 2021, 42(3): 327.
DOI URL |
[49] |
BHARATHI M, BALRAJ B, SIVAKUMAR C, et al. Effect of Ag doping on bipolar switching operation in molybdenum trioxide (MoO3) nanostructures for non-volatile memory. Journal of Alloys and Compounds, 2021, 862: 158035.
DOI URL |
[50] | LEE S M, KIM H, KIM D H, et al. Tailored 2D/3D halide perovskite heterointerface for substantially enhanced endurance in conducting bridge resistive switching memory. ACS Applied Materials & Interfaces, 2020, 12(14): 17039. |
[51] |
PODDAR S, ZHANG Y T, GU L L, et al. Down-scalable and ultra- fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Letters, 2021, 21(12): 5036.
DOI URL |
[52] |
ZHANG G L, XU Y Q, YANG S, et al. Robust mica perovskite photoelectric resistive switching memory. Nano Energy, 2023, 106: 108074.
DOI URL |
[53] |
ZHAO X N, WANG Z Q, LI W T, et al. Photoassisted electroforming method for reliable low-power organic-inorganic perovskite memristors. Advanced Functional Materials, 2020, 30(17): 1910151.
DOI URL |
[54] |
KATO Y, ONO L K, LEE M V, et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Advanced Materials Interfaces, 2015, 2(13): 1500195.
DOI URL |
[55] |
HAM S, CHOI S, CHO H, et al. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Advanced Functional Materials, 2019, 29(5): 1806646.
DOI URL |
[56] |
LIU Z H, CHENG P P, KANG R Y, et al. Photo-enhanced resistive switching effect in high-performance MAPbI3 memristors. Advanced Materials Interfaces, 2023, 10(2): 2201513.
DOI URL |
[57] |
ROGDAKIS K, LOIZOS M, VISKADOUROS G, et al. Memristive perovskite solar cells towards parallel solar energy harvesting and processing-in-memory computing. Materials Advances, 2022, 3(18): 7002.
DOI URL |
[58] |
SIDDIK A, HALDAR P K, DAS U, et al. Organic-inorganic FAPbBr3 perovskite based flexible optoelectronic memory device for light-induced multi level resistive switching application. Materials Chemistry and Physics, 2023, 297: 127292.
DOI URL |
[59] |
ZHENG Y C, YU D F, LIAN H J, et al. Controllable extrinsic ion transport in two-dimensional perovskite films for reproducible, low-voltage resistive switching. Science China Materials, 2023, 66: 2383.
DOI |
[60] | XU J, WU Y H, LI Z Z, et al. Resistive switching in nonperovskite-phase CsPBI3 film-based memory devices. ACS Applied Materials & Interfaces, 2020, 12(8): 9409. |
[61] | HAN J S, LE Q V, CHOI J, et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Applied Materials & Interfaces, 2019, 11(8): 8155. |
[62] | LEE S, WOLFE S, TORRES J, et al. Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer. ACS Applied Materials & Interfaces, 2021, 13(23): 27209. |
[63] |
WANG S X, DONG X Q, XIONG Y X, et al. CsFAMAPbIBr photoelectric memristor based on ion-migration induced memristive behavior. Advanced Electronic Materials, 2021, 7(5): 2100014.
DOI URL |
[64] |
WU Y, WEI Y, HUANG Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10(5): 1584.
DOI URL |
[65] |
SEO J Y, CHOI J, KIM H S, et al. Wafer-scale reliable switching memory based on 2-dimensional layered organic-inorganic halide perovskite. Nanoscale, 2017, 9(40): 15278.
DOI URL |
[66] | MA H L, WANG W, XU H Y, et al. Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. ACS Applied Materials & Interfaces, 2018, 10(25): 21755. |
[67] | SAWA A. Resistive switching in transition metal oxides. Materials Today, 2008, 11(6): 28. |
[68] |
KIM H, CHOI M J, SUH J M, et al. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Materials, 2020, 12(1): 21.
DOI |
[69] |
DAS U, SARKAR P K, DAS D, et al. Influence of nanoscale charge trapping layer on the memory and synaptic characteristics of a novel rubidium lead chloride quantum dot based memristor. Advanced Electronic Materials, 2022, 8(5): 2101015.
DOI URL |
[70] |
JOHN R A, YANTARA N, NG Y F, et al. Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Advanced Materials, 2018, 30(51): 1805454.
DOI URL |
[71] |
QIAN W H, CHENG X F, ZHAO Y Y, et al. Independent memcapacitive switching triggered by bromide ion migration for quaternary information storage. Advanced Materials, 2019, 31(37): 1806424.
DOI URL |
[72] |
ZHOU F C, LIU Y H, SHEN X P, et al. Low-voltage, optoelectronic CH3NH3PbI3-xClx memory with integrated sensing and logic operations. Advanced Functional Materials, 2018, 28(15): 1800080.
DOI URL |
[73] |
GUAN X W, HU W J, HAQUE M A, et al. Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Advanced Functional Materials, 2018, 28(3): 1704665.
DOI URL |
[74] | LI M Z, GUO L C, DING G L, et al. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Applied Materials & Interfaces, 2021, 13(26): 30861. |
[75] |
HUANG X, LI Q Y, SHI W, et al. Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small, 2021, 17(36): 2102820.
DOI URL |
[76] | HAO J, KIM Y H, HABISREUTINGER S N, et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7(18): eabf1959. |
[77] |
YANG X Y, XIONG Z Y, CHEN Y J, et al. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 2020, 78: 105246.
DOI URL |
[78] |
YANG J Q, WANG R P, WANG Z P, et al. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828.
DOI URL |
[79] |
YIN L, HUANG W, XIAO R L, et al. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Letters, 2020, 20(5): 3378.
DOI PMID |
[80] |
YEN M C, LEE C J, LIU K H, et al. All-inorganic perovskite quantum dot light-emitting memories. Nature Communications, 2021, 12: 4460.
DOI |
[81] |
ERCAN E, LIN Y C, HSU L C, et al. Multilevel photonic transistor memory devices based on 1D electrospun semiconducting polymer/perovskite composite nanofibers. Advanced Materials Technologies, 2021, 6(8): 2100080.
DOI URL |
[82] |
VASILOPOULOU M, KIM B S, KIM H P, et al. Perovskite flash memory with a single-layer nanofloating gate. Nano Letters, 2020, 20(7): 5081.
DOI PMID |
[83] |
GUAN X W, WAN T, HU L, et al. A solution-processed all-perovskite memory with dual-band light response and tri-mode operation. Advanced Functional Materials, 2022, 32(16): 2110975.
DOI URL |
[84] |
PEI J X, WU X H, LIU W J, et al. Photoelectric logic and in situ memory transistors with stepped floating gates of perovskite quantum dots. ACS Nano, 2022, 16(2): 2442.
DOI URL |
[85] |
LIU Q, YUE W J, LI Y, et al. Multifunctional optoelectronic random access memory device based on surface-plasma-treated inorganic halide perovskite. Advanced Electronic Materials, 2021, 7(7): 2100366.
DOI URL |
[86] |
SUN Y M, WEN D Z. Logic function and random number generator build based on perovskite resistive switching memory and performance conversion via flexible bending. ACS Applied Electronic Materials, 2020, 2(2): 618.
DOI URL |
[87] |
CHEN Q L, ZHANG Y, LIU S Z, et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Advanced Intelligent Systems, 2020, 2(9): 2000122.
DOI URL |
[88] |
YAN X B, HE H D, LIU G J, et al. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon. Advanced Materials, 2022, 34(23): 2110343.
DOI URL |
[89] |
PEI Y F, LI Z Q, LI B, et al. A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS- core/shell (SC) nanorod arrays optoelectronic memristor. Advanced Functional Materials, 2022, 32(29): 2203454.
DOI URL |
[90] |
PARK Y, KIM M K, LEE J S. 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. Journal of Materials Chemistry C, 2021, 9(4): 1429.
DOI URL |
[91] |
KIM S J, LEE T H, YANG J M, et al. Vertically aligned two- dimensional halide perovskites for reliably operable artificial synapses. Materials Today, 2022, 52: 19.
DOI URL |
[92] |
ZHU Q B, LI B, YANG D D, et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nature Communications, 2021, 12(1): 1798.
DOI |
[93] |
YE H B, LIU Z Y, HAN H D, et al. Lead-free AgBiI4 perovskite artificial synapses for a tactile sensory neuron system with information preprocessing function. Materials Advances, 2022, 3(19): 7248.
DOI URL |
[94] |
YAN X B, PEI Y F, CHEN H W, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Advanced Materials, 2019, 31(7): 1805284.
DOI URL |
[95] |
PEI Y F, YAN L, WU Z H, et al. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano, 2021, 15(11): 17319.
DOI PMID |
[96] |
YAN X B, YAN H W, LIU G J, et al. Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films. Nano Research, 2022, 15(10): 9654.
DOI |
[97] |
YANG Y, OUYANG J Y, MA L P, et al. Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials, 2006, 16(8): 1001.
DOI URL |
[98] |
YAN K, PENG M, YU X, et al. High-performance perovskite memristor based on methyl ammonium lead halides. Journal of Materials Chemistry C, 2016, 4(7): 1375.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||