Collection of Perovskite(202512)
Control and removal of volatile organic compounds (VOCs) have always been critical issues in the environmental field. Catalytic oxidation has emerged as one of the most promising technologies for VOCs removal due to its low operational temperature, high efficiency, and non-toxic by-products. Perovskite oxides (ABO3) are recognized as efficient and stable catalysts for the catalytic oxidation of VOCs. To enhance the catalytic efficiency of perovskite-based catalysts, it is necessary to systematically analyze and optimize the design of perovskite oxides to meet the specific requirements for the removal of different VOCs. This paper comprehensively reviews recent advances in the catalytic oxidation of VOCs using perovskite oxides. Firstly, various design strategies for perovskite oxides in the catalytic oxidation of VOCs, including morphology control, A-site and B-site substitution, defect engineering, and supported perovskite catalysts, are introduced, giving a close link between the catalytic performance of perovskite oxides and their material composition, morphology, surface properties (oxygen species, defects), and intrinsic properties (oxygen vacancy concentration, lattice structure). The reaction mechanisms and degradation pathways involved in the catalytic oxidation of VOCs are analyzed, and the prospects and challenges in the rational design of perovskite oxide catalysts and the exploration of reaction mechanisms are outlined.
Solid oxide fuel cells (SOFCs) are a kind of highly efficient and clean power generation devices whose cathode performance is critically important for the commercial application of the entire cell. Cation segregation on the surface of cathodes significantly affects the performance and operational stability. The double perovskite oxide PrBa0.8Ca0.2Co2O5+δ (PBCC), a highly active cathode, still suffers from serious surface segregation and insufficient Cr-tolerance ability. In order to improve the stability of cathode, an A-site medium-entropy double perovskite oxide Pr0.6La0.1Nd0.1Sm0.1Gd0.1Ba0.8Ca0.2Co2O5+δ (ME-PBCC) derived from PBCC was prepared, and its segregation behavior in Cr-containing atmosphere was systematically investigated. Compared with traditional PBCC cathode, segregation of BaCrO4 and Co3O4 on the surface of ME-PBCC is significantly suppressed, which is attributed to its higher configurational entropy. Electrical conductivity relaxation (ECR) and electrochemical impedance spectroscopy (EIS) results indicate that electrochemical stability of the ME-PBCC cathode has been significantly improved. Among the improvements, after Cr deposition for 48 h, the oxygen surface exchange coefficient kchem of the medium-entropy cathode decreases from 4.4×10-4 cm·s-1 to 1.8×10-4 cm·s-1, with the reduction of kchem significantly lower than that of PBCC (which decreases from 7.3×10-4 cm·s-1 to 1.2×10-4 cm·s-1). Furthermore, the EIS results after treatment in Cr-containing air at 700 ℃ for 48 h show that the polarization resistance (Rp) of ME-PBCC is only 0.07 Ω·cm2, which is lower than 0.11 Ω·cm2 of PBCC, confirming that the medium-entropy cathode has significantly improved operational stability and Cr resistance. This study demonstrates that ME-PBCC is a promising cathode material for SOFCs.
Oxygen vacancy defects at the surface and grain boundaries of tin dioxide (SnO2), an electron transport layer (ETL) material for perovskite solar cells (PSCs), can induce non-radiative recombination, thereby limiting further improvements in device efficiency. This study proposes a low-cost and efficient strategy for modifying the ETL using acesulfame potassium (ACE-K). The results demonstrated that the C=O and S=O groups in ACE-K molecules interact with the undercoordinated Sn4+ on the SnO2 surface, significantly passivating the oxygen vacancy defects in SnO2. Electrical conductivity of the film increased from 4.60×10-6 S·cm-1 to 6.23×10-6 S·cm-1. Moreover, ACE-K modification improved roughness (from 20.6 nm to 14.0 nm) and wettability of the SnO2 film, providing a better substrate for perovskite film growth. Consequently, the perovskite films grown on this optimized ETL enlarged grain sizes from 970.90 nm to 1071.20 nm and enhanced light absorption capability. Space-charge-limited current (SCLC) measurements revealed that the defect density decreased from 4.84×1016 cm-3 to 3.83×1016 cm-3, while electrochemical impedance spectroscopy (EIS) confirmed a significant suppression of non-radiative recombination during charge carrier transport. Ultimately, power conversion efficiency (PCE) of the PSCs improved from 19.27% to 21.60%. In addition, unpackaged ACE-K modified PSCs maintained 91.67% of initial PCE after 2160 h stored in N2, showing excellent long term stability.
In the preparation of Sn-Pb alloyed perovskite, a large amount of stannous fluoride (SnF2) additive is often employed to inhibit the oxidation of Sn2+ ions. However, excessive SnF2 deteriorates quality of the film, photoelectric conversion efficiency (PCE) and stability of the device. Therefore, the development of new antioxidants at low doses is essential to achieve high-performance Sn-Pb alloyed perovskite solar cells. In this study, a two-step process was used to prepare Sn-Pb alloyed perovskite film. In the first step, low-dose stannous iso-octanoate (SnOct2) was introduced to replace SnF2 to inhibit the oxidation of Sn2+. This study showed that the additive could improve the crystallization quality of the film, and the average grain size of the film with SnOct2 could reach 850 nm while the amount of grain boundaries was reduced. The film with the addition of SnOct2 still contained 93.5% Sn2+ after storage for 7 d in the glove box. And due to the excellent oxidation resistance of SnOct2, the device with the additional SnOct2 had a lower defect state density, which was reduced from 7.20×1015 to 4.74×1015 cm-3, inhibiting the non-radiative recombination. In addition, SnOct2 improved the surface energy levels of perovskite films. Finally, PCE of Sn-Pb alloyed perovskite cell supplemented with 0.030 mmol SnOct2 reached 17.25%, superior to that of device supplemented with 0.10 mmol SnF2 (11.63%). After storage in nitrogen for 50 d, more than 70% of initial PCE was still preserved.
Significant progress has recently been made in enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). The electron transport layer (ETL), as an essential component of PSCs, significantly influences the performance of devices. Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate, leading to direct contact between perovskite film and FTO substrate, which induces charge recombination and reduces the performance of PSCs. To address this issue, an in-situ growth method was proposed to prepare conformal SnO2 films on FTO glass substrates in this study. The resulting SnO2 films are not only dense and uniform, fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films, but also facilitating the formation of perovskite films with large grain sizes. Moreover, the conformal SnO2 films can improve the charge extraction at the SnO2/perovskite interface, reduce the trap density and trap-assisted recombination in PSCs, and thus enhance the PCE of PSCs. Through comparative experiments, it is found that the PSCs with in-situ grown SnO2 films show an improved PCE of 21.97%, which significantly increased compared to that with spin-coated SnO2 films (20.93%). All above data demonstrate that the as-prepared SnO2 film can serve as an ideal ETL. It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid, and it can also be extended to ITO flexible transparent conductive substrates in the future.
The fabrication of large-area, high-efficiency perovskite solar cell module (PSM) represents a pivotal stage in the industrialization of perovskite solar cells (PSCs). Leveraging volatile solvents within perovskite precursors is a streamlined approach which offers distinct advantages in the industrialization trajectory of PSCs, but often exhibits accelerated crystallization kinetics, diminutive grain dimensions and elevated defect densities within the films, consequently compromising device efficiency and stability. This study devised a volatile solvent system comprising methylamine/acetonitrile (MA/ACN) for the production of MAPbI3 perovskite solar cells/module. Incorporation of an optimal quantity of PbCl2 into the perovskite precursor solution served to retard crystallization kinetics and passivate grain boundary imperfections. Notably, small-area device fabricated via this methodology demonstrated a peak photovoltaic conversion efficiency (PCE) of 21.21%, alongside enhanced operational stability. Furthermore, PSM engineered through this approach achieved a PCE of 18.89%. This study presents a novel paradigm for advancing the large-scale industrial manufacturing of PSCs.
Perovskite CsPbBr3 quantum dots (PQDs) encapsulated within borosilicate glass can markedly improve their stability, expanding their applicability in sectors under lighting and display of light emitting diode (LED). However, this encapsulation has unintended consequence of reducing both the photoluminescence (PL) intensity and PL quantum yields (PLQY). This research aims to enhance the PL intensity of CsPbBr3 perovskite quantum dots glass (PQDs@glass) by exploring the effects of thermal induction temperature and Pb2+ content on its structural properties. The results demonstrate that the optimal thermal induction temperature for maximizing PL intensity is 460 ℃, with a Pb2+ concentration of 6 mol. The study revealed that the increase in Pb2+ concentration led to the densification of the glass network structure and altered the diffusion behavior of glass components. This alteration affected the crystallization process of PQDs, which ultimately resulted in variations in the luminous intensity of PQDs@glass. This study achieved a highly desirable PLQY of 95.6% for PQDs@glass and successfully carried out size-controllable preparation of PQDs within a borosilicate glass matrix. Remarkably, the obtained results show that over 86% of the obtained PQDs particles fall within a narrow size range of 6-14 nm with average diameter of 10 nm, leading to a well-defined size distribution. Notably, these PQDs exhibit exceptional stability, as evidenced by their ability to retain an extraordinary 98.9% of the initial emission intensity following ten consecutive thermal cycles spanning from room temperature to 200 ℃. Finally, to verify its applicability in LED lighting and display, the obtained PQDs@glass powder was blended with polydimethylsiloxane (PDMS), yielding exemplary LED devices which exhibit an exceptional color gamut range surpassing 110% of the standard RGB (sRGB) color space. In conclusion, this study lays the groundwork for the scalable synthesis of PQDs@glass and paves the way for its utilization in the realm of LED device technology.
Tin dioxide (SnO2) is widely used in perovskite solar cell (PSC) as an electron transport material due to its high transmittance, high electron mobility, good UV stability, and low-temperature processing. However, SnO2 electron transport layer prepared from commercial colloidal solution still faces some challenges such as easy agglomeration, defects, and energy level mismatch, limiting its performance and stability. This study improved the quality of SnO2 films by introducing a polymer chitin nanofiber (1,2-dibenzoyloxyphenylchitin, DC) into the SnO2 precursor solution, and systematically studied the effect of DC on the precursor solution, film and device performance. Experimental results showed that DC additive could effectively inhibit the agglomeration of SnO2 nanoparticles, ensuring a more homogeneous dispersion in the precursor solution. The improved SnO2 films had smaller roughness and could be better wetted by perovskite solution, which is beneficial to closer contact with the perovskite layer. Simultaneously, the oxygen vacancy defects in the SnO2 films were effectively passivated, and the proportion of defects was reduced to 30%, further improving the quality of the films. Based on the improved energy level matching between the SnO2 electron transport layer and the perovskite layer, the carrier extraction and transport performance was optimized. The performance of DC-modified PSC was significantly improved, and the photoelectric conversion efficiency of the optimal device reached 19.11%. This work not only overcomes the agglomeration problem of the SnO2 electron transport layer during the preparation process, but also provides theoretical guidance and method for improving the performance of perovskite solar cells.
Recently, perovskite solar cells have developed marvelously of which power conversion efficiency (PCE) achieved 26.1%, but the mechanical bending and environmental stability of flexible perovskite solar cells (F-PSCs) have remained major obstacles to their commercialization. In this study, the quality and crystallization of perovskite thin films were enhanced by adding agarose (AG). The interaction mechanism, PCE, mechanical bending and environmental stability of the assembled F-PSCs were investigated. It was found that the perovskite films modified by the optimal concentration of AG (3 mmol/L) exhibited denser and smoother morphology, higher crystallinity and absorbance, the lowest defect state density, and lower charge transfer resistance of 2191 Ω. Based on the optimal photoelectric properties, PCE increased from 15.17% to 17.30%. TiO2 nanoparticles (0.75 mmol/L) were further introduced to form a synergistic interaction with AG (3 mmol/L), which provided a rigid backbone structure, and thus enhanced the mechanical and environmental stability of perovskite layers. After 1500 cycles of bending (3 mm in radius), the AG/TiO2 co-modified F-PSCs maintained 84.73% of initial PCE, much higher than the blank device (9.32%). After 49 d in the air, the optimal F-PSCs still maintained 83.27% of initial PCE, superior than the blank device (62.21%). This work provides possibility for preparing highly efficient and stable F-PSCs.
Recently, organic-inorganic hybrid perovskite solar cells have demonstrated a broad commercial prospect due to their high photoelectric conversion efficiency (PCE) and low fabricating costs. During the past decades, the highest reported PCE of small-area (<1 cm2) perovskite solar cells (PSCs) rose to 26.10%, and those of large-area (1-10 cm2), mini-module level (10-800 cm2) and module level (>800 cm2) PSCs increased to 24.35%, 22.40% and 18.60%, respectively. The performance of PSCs decreases dramatically with the area increasing due to limitation of the deposition method and the poor quality of large-area perovskite films. Spin-coating method is not suitable for actual industrial production, while the scalable deposition methods including blade-coating and slot-die coating still face the difficulty of precisely controlling nucleation and crystallization of the perovskite films with large area. This review summarized preparation methods of large-area perovskite films, and discussed the film-forming mechanism and strategies for high-quality perovskite films. Finally, relevant outlooks on technologies and applications for large-area PSCs with high performances and stabilities were analyzed. This review is expected to provide insights on the research of large-area PSCs with high performance.
Taking inspiration from the in-situ reduction technique employed for exsolved nano-metal as anodes in solid oxide fuel cells (SOFCs), this study utilized Sr2V0.1Co0.9MoO6, which was synthesized in an ambient air environment, with perovskites of other phases to co-fire with the electrolyte under atmospheric conditions for direct fabrication of a single cell. By this way, the procedure of subjecting the cell to harsh preparative conditions in a reducing/inert atmosphere to prevent its anodic oxidation can be circumvented. After preparation of the anode precursor on the electrolyte sheet, we adopted a simple process of in-situ reduction at 750 ℃ for 4 h on the fuel side to achieve formation of a pure phase Sr2V0.1Co0.9MoO6 (R-SVCMO) as anode. The results demonstrate a significant reduction in the activation energy of R-SVCMO, accompanied by an increase in conductivity from 2.7 to 21.6 S•cm-1. Moreover, when employing R-SVCMO as anode in a single cell with H2 and wet CH4 as fuel gases, the maximum power density (Pmax) at 850 ℃ can reach up to 862 and 514 mW·cm-2, respectively, showcasing exceptional catalytic performance. The anodes before and after reduction exhibit average thermal expansion coefficient (TEC) of 1.15×10-5 and 1.23×10-5 K-1, respectively, within the temperature range of 100-850 ℃, comparable to those observed in conventional SOFC electrolytes. Therefore, the reduction process does not induce any volumetric changes in the anode layer, significantly enhancing its structural stability. Meanwhile, degradation rate of only 0.13% is occurred. It is worth noting that this R-SVCMO synthesis method can result in remarkable long-term stability and high catalytic activity as an anode material. The obtained R-SVCMO can achieve a 60% catalytic efficiency for wet CH4 and last for 1450 h. Based on this R-SVCMO, the single cell can maintain stability for 450 h at 0.7 V. In conclusion, this study demonstrates an effective way of employing an in-situ fuel reduction method to prepare a single cell with exceptional electrochemical performance and structural stability.
Carbon-based perovskite solar cells (C-PSCs) have attracted significant interest for their advantages of high photoelectric conversion efficiency (PCE), long-term stability and low cost, showing superiority in commercialization of perovskite solar cells (PSCs). However, the promoting effect of PbTiO3 modification and polarization treatment on C-PSCs photovoltaic performance by in-situ generation of PbTiO3 on a dense electron transport layer of TiO2 (c-TiO2) is still unknow.. It was found that the PbTiO3 formed after reaction for 30 s could effectively restrict the sharp increase in resistance of the electron transport layer, and substantially reduced the carrier accumulation at the interface to 29.7%, greatly improving the carrier separation ability. In addition, the carrier accumulation was further reduced to 6.78% through polarizing the c-TiO2/PbTiO3 layer, so that PSCs displayed 0.93 V of open circuit voltage (Voc), 14.83 mA/cm2 of short circuit current density (Jsc), 51.16% of fill factor (FF), and 7.11% of PCE. This work comprehensively reports the methods of PbTiO3 modification and polarization treatment, proposes a research strategy to improve the performance of C-PSCs, reveals the intrinsic mechanism for optimizing carrier transport performance, and provides a way for developing high-efficiency, low-cost and long-life commercial PSCs.
Hysteresis effect greatly impacted performance and stability of perovskite solar cells. Ion migration and the resulting accumulation of interface ions were widely recognized as the most important origins. In this study, upconversion luminescent nanoparticles (UCNP) were used to modify the interface of the electron transport layer/perovskite active layer and the intrinsic perovskite active layer, and the effects of UCNP on the morphology, structure, spectral/optoelectronic properties, and ion migration kinetics of perovskite were systematically explored. The results indicated that the device with UCNP modified perovskite active layer has the best photoelectric conversion efficiency (PCE, 16.27%) and significantly improves the hysteresis factor (HF, 0.05). Furthermore, circuit switching transient optoelectronic technology was employed to investigate the ion migration kinetics without interference from photo-generated carriers, revealing the dual role of UCNP in suppressing ion migration and accumulation during the optoelectronic conversion process of perovskite solar cells. On the one hand, UCNP formed barrier layers that hinder ion accumulation. On the other hand, UCNP infiltrated into grain boundaries of perovskite phase during annealing, hindering ion migration and reducing the recovery voltage from 0.43 V to 0.28 V. The mechanism of carriers and ions interaction was explained based on the polarization-induced trap state model to declare the process of UCNP suppressing the hysteresis of perovskite photovoltaic devices. This work provides effective solution for regulating the hysteresis of perovskite solar cells.