Collection of Perovskite(202412)

Default Latest Most Read
Please wait a minute...
For Selected: Toggle Thumbnails
Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents
ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong
Journal of Inorganic Materials    2024, 39 (11): 1197-1204.   DOI: 10.15541/jim20240138
Abstract203)   HTML10)    PDF(pc) (4510KB)(178)       Save

The fabrication of large-area, high-efficiency perovskite solar cell module (PSM) represents a pivotal stage in the industrialization of perovskite solar cells (PSCs). Leveraging volatile solvents within perovskite precursors is a streamlined approach which offers distinct advantages in the industrialization trajectory of PSCs, but often exhibits accelerated crystallization kinetics, diminutive grain dimensions and elevated defect densities within the films, consequently compromising device efficiency and stability. This study devised a volatile solvent system comprising methylamine/acetonitrile (MA/ACN) for the production of MAPbI3 perovskite solar cells/module. Incorporation of an optimal quantity of PbCl2 into the perovskite precursor solution served to retard crystallization kinetics and passivate grain boundary imperfections. Notably, small-area device fabricated via this methodology demonstrated a peak photovoltaic conversion efficiency (PCE) of 21.21%, alongside enhanced operational stability. Furthermore, PSM engineered through this approach achieved a PCE of 18.89%. This study presents a novel paradigm for advancing the large-scale industrial manufacturing of PSCs.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots
YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin
Journal of Inorganic Materials    2024, 39 (4): 449-456.   DOI: 10.15541/jim230501
Abstract195)   HTML14)    PDF(pc) (2205KB)(321)       Save

Perovskite CsPbBr3 quantum dots (PQDs) encapsulated within borosilicate glass can markedly improve their stability, expanding their applicability in sectors under lighting and display of light emitting diode (LED). However, this encapsulation has unintended consequence of reducing both the photoluminescence (PL) intensity and PL quantum yields (PLQY). This research aims to enhance the PL intensity of CsPbBr3 perovskite quantum dots glass (PQDs@glass) by exploring the effects of thermal induction temperature and Pb2+ content on its structural properties. The results demonstrate that the optimal thermal induction temperature for maximizing PL intensity is 460 ℃, with a Pb2+ concentration of 6 mol. The study revealed that the increase in Pb2+ concentration led to the densification of the glass network structure and altered the diffusion behavior of glass components. This alteration affected the crystallization process of PQDs, which ultimately resulted in variations in the luminous intensity of PQDs@glass. This study achieved a highly desirable PLQY of 95.6% for PQDs@glass and successfully carried out size-controllable preparation of PQDs within a borosilicate glass matrix. Remarkably, the obtained results show that over 86% of the obtained PQDs particles fall within a narrow size range of 6-14 nm with average diameter of 10 nm, leading to a well-defined size distribution. Notably, these PQDs exhibit exceptional stability, as evidenced by their ability to retain an extraordinary 98.9% of the initial emission intensity following ten consecutive thermal cycles spanning from room temperature to 200 ℃. Finally, to verify its applicability in LED lighting and display, the obtained PQDs@glass powder was blended with polydimethylsiloxane (PDMS), yielding exemplary LED devices which exhibit an exceptional color gamut range surpassing 110% of the standard RGB (sRGB) color space. In conclusion, this study lays the groundwork for the scalable synthesis of PQDs@glass and paves the way for its utilization in the realm of LED device technology.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells
XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou
Journal of Inorganic Materials    2024, 39 (7): 828-834.   DOI: 10.15541/jim20230578
Abstract210)   HTML6)    PDF(pc) (5516KB)(332)       Save

Tin dioxide (SnO2) is widely used in perovskite solar cell (PSC) as an electron transport material due to its high transmittance, high electron mobility, good UV stability, and low-temperature processing. However, SnO2 electron transport layer prepared from commercial colloidal solution still faces some challenges such as easy agglomeration, defects, and energy level mismatch, limiting its performance and stability. This study improved the quality of SnO2 films by introducing a polymer chitin nanofiber (1,2-dibenzoyloxyphenylchitin, DC) into the SnO2 precursor solution, and systematically studied the effect of DC on the precursor solution, film and device performance. Experimental results showed that DC additive could effectively inhibit the agglomeration of SnO2 nanoparticles, ensuring a more homogeneous dispersion in the precursor solution. The improved SnO2 films had smaller roughness and could be better wetted by perovskite solution, which is beneficial to closer contact with the perovskite layer. Simultaneously, the oxygen vacancy defects in the SnO2 films were effectively passivated, and the proportion of defects was reduced to 30%, further improving the quality of the films. Based on the improved energy level matching between the SnO2 electron transport layer and the perovskite layer, the carrier extraction and transport performance was optimized. The performance of DC-modified PSC was significantly improved, and the photoelectric conversion efficiency of the optimal device reached 19.11%. This work not only overcomes the agglomeration problem of the SnO2 electron transport layer during the preparation process, but also provides theoretical guidance and method for improving the performance of perovskite solar cells.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells
CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying
Journal of Inorganic Materials    2024, 39 (5): 477-484.   DOI: 10.15541/jim20230532
Abstract286)   HTML7)    PDF(pc) (3806KB)(231)       Save

Recently, perovskite solar cells have developed marvelously of which power conversion efficiency (PCE) achieved 26.1%, but the mechanical bending and environmental stability of flexible perovskite solar cells (F-PSCs) have remained major obstacles to their commercialization. In this study, the quality and crystallization of perovskite thin films were enhanced by adding agarose (AG). The interaction mechanism, PCE, mechanical bending and environmental stability of the assembled F-PSCs were investigated. It was found that the perovskite films modified by the optimal concentration of AG (3 mmol/L) exhibited denser and smoother morphology, higher crystallinity and absorbance, the lowest defect state density, and lower charge transfer resistance of 2191 Ω. Based on the optimal photoelectric properties, PCE increased from 15.17% to 17.30%. TiO2 nanoparticles (0.75 mmol/L) were further introduced to form a synergistic interaction with AG (3 mmol/L), which provided a rigid backbone structure, and thus enhanced the mechanical and environmental stability of perovskite layers. After 1500 cycles of bending (3 mm in radius), the AG/TiO2 co-modified F-PSCs maintained 84.73% of initial PCE, much higher than the blank device (9.32%). After 49 d in the air, the optimal F-PSCs still maintained 83.27% of initial PCE, superior than the blank device (62.21%). This work provides possibility for preparing highly efficient and stable F-PSCs.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application
ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying
Journal of Inorganic Materials    2024, 39 (5): 457-466.   DOI: 10.15541/jim20230448
Abstract481)   HTML35)    PDF(pc) (2388KB)(750)       Save

Recently, organic-inorganic hybrid perovskite solar cells have demonstrated a broad commercial prospect due to their high photoelectric conversion efficiency (PCE) and low fabricating costs. During the past decades, the highest reported PCE of small-area (<1 cm2) perovskite solar cells (PSCs) rose to 26.10%, and those of large-area (1-10 cm2), mini-module level (10-800 cm2) and module level (>800 cm2) PSCs increased to 24.35%, 22.40% and 18.60%, respectively. The performance of PSCs decreases dramatically with the area increasing due to limitation of the deposition method and the poor quality of large-area perovskite films. Spin-coating method is not suitable for actual industrial production, while the scalable deposition methods including blade-coating and slot-die coating still face the difficulty of precisely controlling nucleation and crystallization of the perovskite films with large area. This review summarized preparation methods of large-area perovskite films, and discussed the film-forming mechanism and strategies for high-quality perovskite films. Finally, relevant outlooks on technologies and applications for large-area PSCs with high performances and stabilities were analyzed. This review is expected to provide insights on the research of large-area PSCs with high performance.

Table and Figures | Reference | Related Articles | Metrics | Comments0
High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method
PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao
Journal of Inorganic Materials    2024, 39 (8): 911-919.   DOI: 10.15541/jim20240025
Abstract203)   HTML6)    PDF(pc) (1813KB)(424)       Save

Taking inspiration from the in-situ reduction technique employed for exsolved nano-metal as anodes in solid oxide fuel cells (SOFCs), this study utilized Sr2V0.1Co0.9MoO6, which was synthesized in an ambient air environment, with perovskites of other phases to co-fire with the electrolyte under atmospheric conditions for direct fabrication of a single cell. By this way, the procedure of subjecting the cell to harsh preparative conditions in a reducing/inert atmosphere to prevent its anodic oxidation can be circumvented. After preparation of the anode precursor on the electrolyte sheet, we adopted a simple process of in-situ reduction at 750 ℃ for 4 h on the fuel side to achieve formation of a pure phase Sr2V0.1Co0.9MoO6 (R-SVCMO) as anode. The results demonstrate a significant reduction in the activation energy of R-SVCMO, accompanied by an increase in conductivity from 2.7 to 21.6 S•cm-1. Moreover, when employing R-SVCMO as anode in a single cell with H2 and wet CH4 as fuel gases, the maximum power density (Pmax) at 850 ℃ can reach up to 862 and 514 mW·cm-2, respectively, showcasing exceptional catalytic performance. The anodes before and after reduction exhibit average thermal expansion coefficient (TEC) of 1.15×10-5 and 1.23×10-5 K-1, respectively, within the temperature range of 100-850 ℃, comparable to those observed in conventional SOFC electrolytes. Therefore, the reduction process does not induce any volumetric changes in the anode layer, significantly enhancing its structural stability. Meanwhile, degradation rate of only 0.13% is occurred. It is worth noting that this R-SVCMO synthesis method can result in remarkable long-term stability and high catalytic activity as an anode material. The obtained R-SVCMO can achieve a 60% catalytic efficiency for wet CH4 and last for 1450 h. Based on this R-SVCMO, the single cell can maintain stability for 450 h at 0.7 V. In conclusion, this study demonstrates an effective way of employing an in-situ fuel reduction method to prepare a single cell with exceptional electrochemical performance and structural stability.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment
LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun
Journal of Inorganic Materials    2024, 39 (11): 1205-1211.   DOI: 10.15541/jim20240132
Abstract183)   HTML6)    PDF(pc) (1381KB)(187)       Save

Carbon-based perovskite solar cells (C-PSCs) have attracted significant interest for their advantages of high photoelectric conversion efficiency (PCE), long-term stability and low cost, showing superiority in commercialization of perovskite solar cells (PSCs). However, the promoting effect of PbTiO3 modification and polarization treatment on C-PSCs photovoltaic performance by in-situ generation of PbTiO3 on a dense electron transport layer of TiO2 (c-TiO2) is still unknow.. It was found that the PbTiO3 formed after reaction for 30 s could effectively restrict the sharp increase in resistance of the electron transport layer, and substantially reduced the carrier accumulation at the interface to 29.7%, greatly improving the carrier separation ability. In addition, the carrier accumulation was further reduced to 6.78% through polarizing the c-TiO2/PbTiO3 layer, so that PSCs displayed 0.93 V of open circuit voltage (Voc), 14.83 mA/cm2 of short circuit current density (Jsc), 51.16% of fill factor (FF), and 7.11% of PCE. This work comprehensively reports the methods of PbTiO3 modification and polarization treatment, proposes a research strategy to improve the performance of C-PSCs, reveals the intrinsic mechanism for optimizing carrier transport performance, and provides a way for developing high-efficiency, low-cost and long-life commercial PSCs.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells
YU Man, GAO Rongyao, QIN Yujun, AI Xicheng
Journal of Inorganic Materials    2024, 39 (4): 359-366.   DOI: 10.15541/jim20230424
Abstract342)   HTML15)    PDF(pc) (2082KB)(1147)       Save

Hysteresis effect greatly impacted performance and stability of perovskite solar cells. Ion migration and the resulting accumulation of interface ions were widely recognized as the most important origins. In this study, upconversion luminescent nanoparticles (UCNP) were used to modify the interface of the electron transport layer/perovskite active layer and the intrinsic perovskite active layer, and the effects of UCNP on the morphology, structure, spectral/optoelectronic properties, and ion migration kinetics of perovskite were systematically explored. The results indicated that the device with UCNP modified perovskite active layer has the best photoelectric conversion efficiency (PCE, 16.27%) and significantly improves the hysteresis factor (HF, 0.05). Furthermore, circuit switching transient optoelectronic technology was employed to investigate the ion migration kinetics without interference from photo-generated carriers, revealing the dual role of UCNP in suppressing ion migration and accumulation during the optoelectronic conversion process of perovskite solar cells. On the one hand, UCNP formed barrier layers that hinder ion accumulation. On the other hand, UCNP infiltrated into grain boundaries of perovskite phase during annealing, hindering ion migration and reducing the recovery voltage from 0.43 V to 0.28 V. The mechanism of carriers and ions interaction was explained based on the polarization-induced trap state model to declare the process of UCNP suppressing the hysteresis of perovskite photovoltaic devices. This work provides effective solution for regulating the hysteresis of perovskite solar cells.

Table and Figures | Reference | Related Articles | Metrics | Comments0
EDITORIAL: Unfolding the Mysterious Scroll of Novel Photoelectric Perovskite Step by Step
ZHAO Jinjin, ZHANG Wenhua
Journal of Inorganic Materials    2023, 38 (9): 989-990.   DOI: 10.15541/jim20232000
Abstract436)   HTML66)    PDF(pc) (317KB)(440)       Save
Reference | Related Articles | Metrics | Comments0
Optimization of Interfacial Engineering of Perovskite Solar Cells
WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin
Journal of Inorganic Materials    2023, 38 (11): 1323-1330.   DOI: 10.15541/jim20230169
Abstract498)   HTML22)    PDF(pc) (14143KB)(602)       Save

Hybrid organic-inorganic perovskite solar cells (PSCs) have attracted global attention as one of the most promising photovoltaic materials due to their high efficiency, low energy consumption and low cost. However, non-radiative recombination caused by interface defects severely inhibits the performance of PSCs. To solve this critical issue, the particle size of nickel oxide (NiOx) hole transport layer was reduced to improve the particle size uniformity and achieve efficient hole transport. Furthermore, the antisolvent acting time of the perovskite film was optimized to reduce the interfacial non-radiative recombination and interfacial defect. As a result, the crystalline quality is improved and power conversion efficiency (PCE) of the perovskite solar cells increase from 10.11% to 18.37%. Kelvin probe atomic force microscopy (KPFM) study shows that the contact potential difference (CPD) of the optimized perovskite film in the illumination condition increases by 120.39 mV compared with that under the dark condition. Analysis by piezoelectric atomic force microscopy (PFM) reveals that the ferroelectric polarization of the optimized interfacial perovskite films hardly changes from illumination to dark states, indicating that reducing interfacial defects can decrease the hysteresis effect of the PSCs. It is concluded that optimizing the NiOx hole transport layer and improving the quality of perovskite film can reduce the interface defects, the non-radiative recombination and the hysteresis effect, and improve PCE of perovskite solar cells.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells
MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min
Journal of Inorganic Materials    2023, 38 (12): 1387-1395.   DOI: 10.15541/jim20230098
Abstract316)   HTML16)    PDF(pc) (2475KB)(483)       Save

Perovskite solar cells (PSCs) are developing rapidly and their power conversion efficiency (PCE) has been repeatedly refreshed, but their long-term stability still needs to be improved. At present, most of the preparation of high-efficiency PSCs is completed in the inert gas, with high cost and limited operating space, which is not conducive to its industrial application. Here, perovskite solar cells with mixed cation, displaying ultra-long stability, were successfully prepared in the air. Effects of A-site cation doping on the microstructure, optoelectronic properties and stability of the perovskite were systematically investigated. The experimental results show that FA+ and Cs+ co-doping improves the quality of perovskite films, modulates the energy level arrangement of perovskite/SnO2, suppresses carrier complexation, and significantly improves the PCE, long-term, wet and thermal stability of the cell. The optimal PCE of Cs0.05MA0.35FA0.6PbI3 cells is 19.34%, maintaining 85% of the initial efficiency after reserving for 242 d in dark environment at (20±5) ℃ and <5% relative humidity. In contrast, the PCE of the MAPbI3 cell decreased to 30% of the initial value after reserving for 112 d under the same test conditions. FA+ and Cs+ co-doping also significantly improved the thermal and moisture resistance of the cells. Cs0.05MA0.35FA0.6PbI3 PSCs remain 99% and 84% of initial PCE after aging for 96 h at (85±5) ℃ and 20%-30% relative humidity, (20±5) ℃ and 80%-90% relative humidity in the dark, respectively. In contrast, PCEs of MAPbI3 PSCs under the same conditions remain only 70% and 56%. This study provides a reference for the preparation of highly efficient and ultra-long stable mixed cation solar cells in the air.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells
CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua
Journal of Inorganic Materials    2023, 38 (9): 991-1004.   DOI: 10.15541/jim20230105
Abstract766)   HTML59)    PDF(pc) (18488KB)(429)       Save

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted widespread attention due to their high power conversion efficiency (PCE) and low manufacturing cost. Although the certified PCE has reached 25.8%, the stability of PSCs under high temperature, high humidity, and continuous light exposure is still significantly inferior to that of traditional cells, which hinders their commercialization. Developing and applying highly stable inorganic hole transport materials (HTMs) is currently one of the effective methods to solve the photo-thermal stability of devices, which can effectively shield water and oxygen from corroding the perovskite absorption layer, thereby avoiding the formation of ion migration channels. This paper outlines the approximate classification and photoelectric properties of inorganic HTMs, introduces relevant research progress, summarizes performance optimization strategies for inorganic HTMs devices, including element doping, additive engineering, and interface engineering, and finally prospects the future development directions. It is necessary to further study the microstructure of inorganic HTMs and their relationship with the performance of PSCs to achieve more efficient and stable PSCs.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research Progress of Photoelectric Resistive Switching Mechanism of Halide Perovskite
GUO Huajun, AN Shuailing, MENG Jie, REN Shuxia, WANG Wenwen, LIANG Zishang, SONG Jiayu, CHEN Hengbin, SU Hang, ZHAO Jinjin
Journal of Inorganic Materials    2023, 38 (9): 1005-1016.   DOI: 10.15541/jim20230132
Abstract441)   HTML25)    PDF(pc) (7023KB)(488)       Save

As a reversible, non-volatile, and resistive state mutation information storage and processing device, the resistive switching (RS) memory is expected to solve the inherent physical limitations of the traditional memory and von Neumann bottleneck, and has received widespread attention. Taking advantage of rapid carrier migration characteristics and excellent photoelectric conversion performance, halide perovskite optoelectronic RS memory devices present excellent resistive switching performance. In recent years, researches on storage and computing applications of the halide perovskite RS memory developed unprecedentedly; whereas, the working mechanisms of halide perovskite RS memory still remain unclear. This review analyzes the working mechanism of halide perovskite RS memory, compares the regulation characteristics of conduction filaments (CFs) and energy level matching (ELM), summarizes the constraints of various mechanisms, reveals the repeated formation and dissolution of CFs under light illumination and electric field, as well as Schottky barrier between the perovskite transfer layer and other layer, dominates the On/Off ratio, threshold (Set/Reset) voltage and performance stability of halide perovskite optoelectronic RS memory, and prospects the applications of halide perovskite RS memory in artificial intelligence bionic synapses, in-memory computing, and machine vision.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite
DONG Yiman, TAN Zhan’ao
Journal of Inorganic Materials    2023, 38 (9): 1031-1043.   DOI: 10.15541/jim20230116
Abstract481)   HTML29)    PDF(pc) (4546KB)(569)       Save

Power conversion efficiency of single-junction solar cells is fundamentally limited by the Shockley- Queisser (S-Q) limit. The most promising practical technology to break through the S-Q limit is to use two-terminal tandem structure which can simultaneously solve the problems, spectral mismatch and thermal relaxation energy loss, in single-junction devices. As one of the important components of the interconnecting layer, the recombination layer in the two-terminal tandem solar cells can provide recombination sites for electrons and holes extracted from the electron transporting layer and the hole transporting layer, avoiding the open-circuit voltage loss caused by charge accumulation and promoting the current flow of tandem solar cells. The recombination layer is considered as one of the key factors of achieving high-performance tandem devices. The ideal recombination layer should possess high conductivity to improve the charge recombination rate, high optical transmittance to ensure effective light absorption of the rear subcells, good chemical stability to reduce the damage caused by the solvent, and low preparation cost to promote the commercial production process. At present, a variety of materials have been used in two-terminal tandem solar cells, such as thin metals, transparent conductive oxides, conductive polymers, graphene oxide, etc., which play an important role in perovskite-perovskite, perovskite-organic, and perovskite-silicon two terminal tandem devices. In this review, the research progress of recombination layers in different types of tandem solar cells is summarized, together with types, design principles, preparation processes, and their advantages and disadvantages. Meanwhile, problems and challenges of the current recombination layers are proposed, which provides a useful reference for the design of high-performance tandem cells.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research Progress of Cs2AgBiBr6 Perovskite Solar Cell
ZHANG Lun, LYU Mei, ZHU Jun
Journal of Inorganic Materials    2023, 38 (9): 1044-1054.   DOI: 10.15541/jim20230049
Abstract629)   HTML64)    PDF(pc) (7454KB)(1133)       Save

In recent years, organic-inorganic hybrid perovskite solar cells have received a lot of attention for their excellent performance and low manufacturing cost. However, the toxicity of lead in organic-inorganic hybrid perovskite solar cells and instability inhibits its further commercialization. Double perovskite Cs2AgBiBr6 possess excellent stability, low toxicity, long carrier lifetime, and small effective carrier mass, and is considered as a promising photovoltaic material. It has been applied in solar cells and displayed superior performance. However, the power conversion efficiency of Cs2AgBiBr6 perovskite solar cell still lags behind organic-inorganic hybrid perovskite solar cells, and its development faces various challenges. This review firstly introduces the crystal structure and the structural parameters such as tolerance factor of Cs2AgBiBr6. And then, the progress of thin film preparation technologies such as solution processing method, anti-solvent assisted film forming method, vapor deposition processing method, vacuum-assisted film forming method, spray-coating method are summarized, and the advantages and disadvantages of various preparation technologies are discussed. The performance optimization strategies of Cs2AgBiBr6 perovskite solar cells are analyzed from three aspects: element doping, additive engineering, and interface engineering (interface energy level matching and interface defect passivation), and the research progress in recent years is reviewed. Finally, the challenges faced by Cs2AgBiBr6 perovskite solar cells are pointed out, and future research directions are prospected from three aspects: precursor solvent engineering, bandgap engineering, and device degradation mechanism.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors
DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia
Journal of Inorganic Materials    2023, 38 (9): 1017-1030.   DOI: 10.15541/jim20230016
Abstract708)   HTML28)    PDF(pc) (11306KB)(671)       Save

X-ray detection has been widely used in medical imaging, security inspection, and industrial non-destructive tests. Halide perovskite X-ray detectors have attracted increasing attention due to their high sensitivity and low detection limit, but the notorious ion migration leads to poor operational stability. It is reported that the low dimensional structure can effectively suppress the ion migration of perovskites, thus greatly improving the stability of the detectors. This review introduces the working mechanism, key performance parameters of perovskite X-ray detectors, and summarizes the recent progress of low-dimensional perovskite materials and their application in direct X-ray detectors. The relationship between the structural characteristics of low-dimensional perovskite materials and their X-ray detection performance was systematically analyzed. Low-dimensional perovskite is a promising candidate for the preparation of X-ray detectors with both high sensitivity and stability. Further optimization of detection material and device structure, preparation of large-area pixelated imaging devices, and study of working mechanism in-depth of the detector are expected to promote the practical application of perovskite X-ray detectors.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs
WANG Run, XIANG Hengyang, ZENG Haibo
Journal of Inorganic Materials    2023, 38 (9): 1062-1068.   DOI: 10.15541/jim20230022
Abstract370)   HTML18)    PDF(pc) (2281KB)(396)       Save

Perovskite light-emitting diodes (PeLEDs), owing to their unique photoelectric performance, show promising prospects in display applications. Red, green, and blue monochromatic PeLEDs have achieved remarkable breakthroughs, but the study of red/green/blue perovskite co-electroluminescence is still delayed. This study proposed a strategy that an intermediate connection layer (ICL) with hole/electron generation and transport capability is introduced between perovskites. On the one hand, introduction of the ICL can inhibit ion exchange and energy transfer. On the other hand, ICL has a charge-generation function that ensures different perovskite centers capture enough carriers. Furthermore, the thickness of the hole transport layer (NPB) is optimized. Furthermore, the thickness of the hole transport layer (NPB) is regulated, the blue/green tandem PeLED achieved relatively balanced luminescence and exhibits the largest EQE of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%, which is the first report in the field of PeLEDs, and exhibits the largest External Quantum Efficiency(EQE) of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%. In conclusion, this work provides a reference strategy for the co-electroluminescence of multicolor perovskites, which is expected to promote the development of perovskite in display applications.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering
DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen
Journal of Inorganic Materials    2023, 38 (9): 1089-1096.   DOI: 10.15541/jim20220710
Abstract386)   HTML16)    PDF(pc) (5942KB)(747)       Save

With a bandgap of 1.1-1.4 eV, Sn/Pb mixed halide perovskites are ideal materials for single-junction solar cells to reach the power conversion efficiencies (PCEs) limit of Shockley-Queisser (S-Q) theory. Their chemical composition gradient in the vertical direction of the perovskite films affect the transport and separation of carriers by changing the energy band structures. Therefore, it is very important to control the crystallization process of tin-lead mixed perovskite thin films. In this work, it was found that different vertical composition gradients were formed when tin-lead mixed perovskites were prepared with different amounts of the anti-solvent. Larger amounts of anti-solvent was contributed to higher lead content on the film surface. The vertical composition gradient of tin-lead mixed perovskite could be regulated by adjusting the solvent composition, among which increasing V(DMSO):V(DMF) in the solvent could form a vertical composition gradient with a lead-rich bottom and a tin-rich surface. When V(DMSO):V(DMF) in lead-based precursor solutions was optimized to 1 : 2, compared with the control group of 1 : 4, open circuit voltage of the device under standard light conditions increased from 0.725 to 0.769 V, short circuit current density from 30.95 to 31.65 mA·cm-2, and PCE from 16.22% to nearly 18%. Numerical simulations using SCAPS further proved the necessity of forming a vertical composition gradient. When the bottom of the perovskite film is rich in lead and the top is rich in tin, the recombination of carriers in the hole transport layer interface region is reduced, which can improve the device’s performance.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance
DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian
Journal of Inorganic Materials    2023, 38 (9): 1076-1082.   DOI: 10.15541/jim20230050
Abstract313)   HTML16)    PDF(pc) (5603KB)(446)       Save

Organic-inorganic hybrid perovskite is an ideal light absorption material due to its high light absorption coefficient, adjustable band gap and bipolar charge conduction characteristics. However, perovskite thin films prepared by solution method possess various defects in the surface and interface, which inhibit carrier transport and trigger recombination. In this study, a multifunctional amino acid derivative, 9-fluorenylmethoxycarbonyl- L-phenylalanine-L-phenylalanine (Fmoc-FF-OH), was selected as an additive to reduce defects of perovskite film and to inhibit carrier recombination at grain boundaries. When the concentration of Fmoc-FF-OH is 0.6 g·L-1, the particle size of the perovskite thin film increases from 138 to 210 nm, and the defect state density decreases from 2.46×1015 to 2.17×1015 cm-3. Perovskite solar cells also exhibit optimal performance with open circuit voltage increasing from 1.05 to 1.10 V, and photoelectric conversion efficiency (PCE) improved from 15.50% to 17.44%. After stability test for 220 h, the photoelectric conversion efficiency of the device can still maintain 71% of the initial.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4
CAI Kai, JIN Zhiwen
Journal of Inorganic Materials    2023, 38 (9): 1069-1075.   DOI: 10.15541/jim20230045
Abstract708)   HTML38)    PDF(pc) (1410KB)(437)       Save

Two-dimensional (2D) perovskite displays great potential in optoelectronic applications due to its inherent quantum well structure, large exciton binding energy and good stability. However, facile preparation of high-quality 2D perovskite films with low cost remains a huge challenge. In this work, high-quality two-dimensional perovskite (PEA)2PbI4 films were prepared by solution method at low annealing temperature(80 ℃) without other special treatments, and further applied in the field of photodetectors. The results show that this photodetector possessed a low dark current (10-11 A), good responsiveness illuminated at a wavelength of 450 nm (107 mA·W-1), high detection rate (2.05×1012 Jones) and fast response time (250 μs/330 μs). After 1200 s continuous illumination, the device maintains 95% initial photocurrent. In addition, the photocurrent remains almost unchanged after storage for 30 d. This work provides promising strategy to develop stable and high-performance optoelectronic devices.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes
FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang
Journal of Inorganic Materials    2023, 38 (9): 1103-1109.   DOI: 10.15541/jim20230002
Abstract415)   HTML27)    PDF(pc) (6216KB)(322)       Save

Carbon-based perovskite solar cells (C-PSCs) play an important role in industrialization research due to their stability and low cost. In this work, high-quality NiOx mesoporous layer was selected as a hole transport layer (HTL) based on MAPbI3 material to enhance the performance of C-PSCs. The effect of preparation methods of the NiOx mesoporous layer on the solar cell performance and the optimum thickness of the NiOx mesoporous layer were investigated. It was found that mesoporous layers prepared by screen-printing process with well-distributed pores facilitated the filling of perovskite (PVK) precursor solution in the underlayer mesoporous scaffold. Finally, an HTL-contained perovskite solar cell with high efficiency and almost negligible hysteresis was achieved, possessing an open-circuit voltage (VOC) of 910 mV, a power conversion efficiency (PCE) of 14.63%, and certified efficiency reached 14.88%. Moreover, PCE of the solar cell displayed outstanding stability after being stored in air for nearly 900 h.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3
WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang
Journal of Inorganic Materials    2023, 38 (9): 1110-1116.   DOI: 10.15541/jim20220756
Abstract473)   HTML19)    PDF(pc) (2749KB)(308)       Save

Density functional theory calculations play an important role in the study of defects in halide perovskites. Although the traditional semi-local functionals (such as PBE) can obtain the band gaps close to the experiments, they fail to accurately describe the positions of the band edges. Utilizing more accurate hybrid functionals combined with the spin-orbit coupling (SOC) effect with full structure relaxation is considered to be necessary for the prediction of defect properties. There are two types of hybrid functionals in the literature, namely the screened HSE and the unscreened PBE0. In this study, taking the orthorhombic phase CsPbI3 as an example, these methods were compared for the calculation of defect properties. The results show that there is no obvious difference between two methods for bulk properties, but qualitative differences appear for the defect properties. Most of the shallow-level defects predicted in the HSE calculations become deep-level defects in the PBE0 calculations. Meanwhile, there are qualitative differences between the defect transition levels and the Kohn-Sham levels. The origin of above differences lies in the fact that the Hartree-Fock exchange potential has long-range interaction. Therefore, in unscreened hybrid functionals, such as PBE0, it is more difficult to obtain convergent results with a manageable supercell size. In contrast, HSE exhibits a screening effect on the Hartree-Fock exchange potential and can obtain accurate defect energy levels using relatively small supercell sizes. Therefore, all results here demonstrate that the HSE hybrid functional owns a significant advantage in dealing with this problem even though a large Hartree-Fock mixing parameter (about 0.43) is needed.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission
WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian
Journal of Inorganic Materials    2023, 38 (9): 1083-1088.   DOI: 10.15541/jim20230005
Abstract376)   HTML23)    PDF(pc) (4573KB)(470)       Save

Cs2NaBiCl6 double perovskite with indirect band demonstrates near-infrared (NIR) wide-band emission, but its low efficacy limits its potential applications in the field of NIR. In this work, micron-sized Cs2Ag0.1Na0.9BiCl6:Tm3+ double perovskites were synthesized via the coprecipitation method, which shows enhanced NIR emission. Their optical absorption, photoluminescence emission (PL) and excitation (PLE), time-resolved photoluminescence, and photoluminescence quantum yield (PLQY) were investigated. The Cs2Ag0.1Na0.9BiCl6:Tm3+ shows optical bandgap of 3.06 eV and NIR broad emission peaking at 680 nm under 350 nm excitation due to recombination of self-trapped excitons (STEs). Meanwhile, a new emission peak could be observed at 810 nm due to Tm3+ doping. The PLQY in the band range of 780-830 nm can be increased by 6.05 times from 1.67% to 11.77% and in the band range of 650-900 nm can reach 25.22%. This study proves the feasibility of Cs2Ag0.1Na0.9BiCl6:Tm3+ double perovskite as new NIR emission material.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells
HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun
Journal of Inorganic Materials    2023, 38 (9): 1097-1102.   DOI: 10.15541/jim20220777
Abstract268)   HTML22)    PDF(pc) (966KB)(494)       Save

Solution-processed perovskite films usually contain a large quantity of grain boundaries, which decrease the film crystalline quality and introduce severe defect recombination, hindering performance of the devices based on them. Therefore, preparation of high-quality films to achieve high power conversion efficiencies remains a great challenge for perovskite solar cells. Due to high abilities of self-assembly and morphology-tuning for liquid crystal molecules, a single-molecule liquid crystal 4-cyano-4′-pentyl biphenyl (5CB) was employed as additive in CH(NH2)2PbI3 (FAPbI3) precursor solution to increase the perovskite grain size and decrease the grain boundaries. In addition, the cyano group in 5CB passivates the uncoordinated Pb2+ in the perovskite films, which reduces the trap density concentration and inhibits the nonradiative recombination. The resulting perovskite solar cells with 0.2 mg/mL 5CB in the precursor achieve an efficient power conversion efficiency of 21.27% with an open circuit voltage of 1.086 V, a current density of 24.17 mA/cm2, and a fill factor of 80.96%. In conclusion, introducing single-molecule liquid crystal as additive is a facile and efficient strategy for improving the performance of FAPbI3 solar cells.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties
HU Ying, LI Ziqing, FANG Xiaosheng
Journal of Inorganic Materials    2023, 38 (9): 1055-1061.   DOI: 10.15541/jim20220569
Abstract369)   HTML26)    PDF(pc) (3199KB)(338)       Save

AgBi2I7 thin film is one of the important candidates for constructing heterojunction ultraviolet photodetectors, due to their great optoelectronic properties and environmental stability. In this study, AgBi2I7 thin films were prepared by solution method and their photodetecting properties were investigated. By optimizing technological parameters such as concentration of the precursor solution and type of solvent (n-butylamine and DMSO), their photodetecting performance were investigated. AgBi2I7 thin films were fabricated on wide-bandgap GaN by optimal scheme to construct an AgBi2I7/GaN heterojunction. The heterojunction has a great selective detection of UVA-ray of which full width at half maximum is about 30 nm. Under 3 V bias and 350 nm UV irradiation, the On/Off ratio of the device exceeds 5 orders of magnitude, achieving a high responsivity of 27.51 A/W and a high detection rate of 1.53×1014 Jones. Therefore, the present research indicates that AgBi2I7 thin films prepared by solution method are promising to be applied to construct high-performance heterojunction ultraviolet photodetectors.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells
ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang
Journal of Inorganic Materials    2023, 38 (2): 213-218.   DOI: 10.15541/jim20220155
Abstract725)   HTML138258)    PDF(pc) (5027KB)(659)       Save

Perovskite solar cells (PSCs) with structure of TiO2/ZrO2/carbon triple-layer are attractive recently because of their inexpensive raw materials, scalable fabrication process, and outstanding stability. But little progress has been made in the low temperature fabrication of TiO2/ZrO2/carbon triple-layer structured PSCs. A major reason is that it is rather difficult to construct the ZrO2 spacer layer at low temperature. Herein, we report a facile low-temperature spray-coating method to prepare effective ZrO2 spacer layer in TiO2/ZrO2/carbon triple-layer PSCs using urea to tune the porosity. After optimizing the amount of urea and the thickness of zirconia to 1100 nm, power conversion efficiencies (PCE) of 14.7% for a single cell and 10.8% for a module with 5 cells connected in series (5×0.9 cm× 2.5 cm) were achieved. Furthermore, the PSCs could be stable for 200 d at constant temperature (25 ℃) and humidity (40%). With this spray coating method, the zirconia layer on flexible substrate can endure 50 times of bending without any cracking. Compared to the conventional screen-printing method of ZrO2 spacer layer, the spray-coating alternative developed in this work shows advantages of more convenient to process, preparation under lower temperature, and compatibility to flexible substrate.

Table and Figures | Reference | Related Articles | Metrics | Comments0
In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells
LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang
Journal of Inorganic Materials    2024, 39 (12): 1397-1403.   DOI: 10.15541/jim20240202
Abstract163)   HTML10)    PDF(pc) (6249KB)(94)       Save

Significant progress has recently been made in enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). The electron transport layer (ETL), as an essential component of PSCs, significantly influences the performance of devices. Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate, leading to direct contact between perovskite film and FTO substrate, which induces charge recombination and reduces the performance of PSCs. To address this issue, an in-situ growth method was proposed to prepare conformal SnO2 films on FTO glass substrates in this study. The resulting SnO2 films are not only dense and uniform, fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films, but also facilitating the formation of perovskite films with large grain sizes. Moreover, the conformal SnO2 films can improve the charge extraction at the SnO2/perovskite interface, reduce the trap density and trap-assisted recombination in PSCs, and thus enhance the PCE of PSCs. Through comparative experiments, it is found that the PSCs with in-situ grown SnO2 films show an improved PCE of 21.97%, which significantly increased compared to that with spin-coated SnO2 films (20.93%). All above data demonstrate that the as-prepared SnO2 film can serve as an ideal ETL. It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid, and it can also be extended to ITO flexible transparent conductive substrates in the future.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells
WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun
Journal of Inorganic Materials    2024, 39 (12): 1339-1347.   DOI: 10.15541/jim20240191
Abstract150)   HTML4)    PDF(pc) (4769KB)(117)       Save

In the preparation of Sn-Pb alloyed perovskite, a large amount of stannous fluoride (SnF2) additive is often employed to inhibit the oxidation of Sn2+ ions. However, excessive SnF2 deteriorates quality of the film, photoelectric conversion efficiency (PCE) and stability of the device. Therefore, the development of new antioxidants at low doses is essential to achieve high-performance Sn-Pb alloyed perovskite solar cells. In this study, a two-step process was used to prepare Sn-Pb alloyed perovskite film. In the first step, low-dose stannous iso-octanoate (SnOct2) was introduced to replace SnF2 to inhibit the oxidation of Sn2+. This study showed that the additive could improve the crystallization quality of the film, and the average grain size of the film with SnOct2 could reach 850 nm while the amount of grain boundaries was reduced. The film with the addition of SnOct2 still contained 93.5% Sn2+ after storage for 7 d in the glove box. And due to the excellent oxidation resistance of SnOct2, the device with the additional SnOct2 had a lower defect state density, which was reduced from 7.20×1015 to 4.74×1015 cm-3, inhibiting the non-radiative recombination. In addition, SnOct2 improved the surface energy levels of perovskite films. Finally, PCE of Sn-Pb alloyed perovskite cell supplemented with 0.030 mmol SnOct2 reached 17.25%, superior to that of device supplemented with 0.10 mmol SnF2 (11.63%). After storage in nitrogen for 50 d, more than 70% of initial PCE was still preserved.

Table and Figures | Reference | Related Articles | Metrics | Comments0