Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1017-1030.DOI: 10.15541/jim20230016
Special Issue: 【信息功能】敏感陶瓷(202506); 【能源环境】钙钛矿(202506)
• REVIEW • Previous Articles Next Articles
DONG Siyin1(), TIE Shujie1, YUAN Ruihan1,2, ZHENG Xiaojia1,2(
)
Received:
2023-01-10
Revised:
2023-03-27
Published:
2023-09-20
Online:
2023-04-11
Contact:
ZHENG Xiaojia, associate professor. E-mail: xiaojia@caep.cnAbout author:
Dong Siyin (1997-), male, PhD candidate. E-mail: 1450063752@qq.com
Supported by:
CLC Number:
DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors[J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030.
Fig. 3 0D bismuth-based perovskite single crystal detector (a) Schematic crystal structure and photograph of MA3Bi2I9 single crystal[25]; (b) Photograph of the MA3Bi2I9 single crystal after cutting and polishing[25]; (c) Resistivity of representative X-ray detection materials; (d) Device operational stability against continuous X-ray irradiation with high dose rates under a high bias volage[25]; (e) Photograph and corresponding X-ray images of the keys[54]; (f) FWHM of (00l) peaks of Cs3Bi2I9 single crystals, which are prepared by liquid diffusion separation induced crystallization method and inverse temperature crystallization method[53]
Fig. 4 1D and 2D bismuth-based perovskite single crystal detectors (a) Photograph of 1D (H2MDAP)BiI5 single crystal and schematic diagram of device structure[57]; (b, c) Crystal structure of (b) 1D (DMEDA)BiI5 and (c) 2D (NH4)3Bi2I9[29,58]; (d) Photograph of the (NH4)3Bi2I9 single crystal and two different device structures based on the (100) plane[29]
Fig. 5 2D perovskite X-ray detectors (a) Schematic diagram of the crystal structures of RP and DJ perovskites [63]; (b) X-ray image of nut based on (BA)2PbI4 single crystal device[64]; (c) X-ray images generated by (F-PEA)2PbI4 single crystal device[66]; (d) Schematic diagram of the transition of pure 2D perovskites to quasi-2D perovskites[70]
Fig. 6 Quasi-2D polycrystalline X-ray detector (a) Preparation of RP perovskite-nylon matrix by a lamination process[26]; (b) Photograph and corresponding X-ray image of a copper Chinese characters pattern[26]; (c) A-site cation engineering to prepare RP perovskite X-ray detectors[22]; (d) Microstructure of the TFT substrate and 12×12 pixel perovskite X-ray detector[22]; (e) Images of visible light and X-rays based on BA2MA9Pb10I31 detector[22]; (f) X-ray image based on (BA2PbBr4)0.5-FAPbI3 device[83]; (g) Dark current uniformity of MAPbI3 device (left) and quasi-2D PEA2MA8Pb9I28 device (right)[84]
Compound | Eph/keV, Vp/kVp | Thickness/ mm | Electric field/ (V·mm-1) | Sensitivity/ (µC·Gyair−1·cm−2) | LoD/ (nGyair·s−1) | Resistivity/ (Ω·cm) | Bandgap/ eV | µτ/ (cm2·V−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Single crystal | |||||||||
Cs4PbI6 | 30 keV | - | - | 451.49 | 90 | - | 3.46 | 9.7×10-4 | [ |
Cs3Bi2I9 | 40 kVp | 1.2 | 50 | 1652.3 | 130 | 2.79×1010 | 1.96 | 7.97×10-4 | [ |
Cs3Bi2I9 | 45 keV | 1 | 120 | 964 | 44.6 | 1.12×109 | ~1.89 | 1.87×10-3 | [ |
MA3Bi2i9 | 100 kVp | 2.5 | 48 | 10620 | 0.62 | 5.27×1011 | 1.98 | 2.8×10-3 | [ |
MA3Bi2i9 | 40 kVp | 1 | 60 | 1947 | 83 | 3.74×1010 | 1.99 | 2.87×10-3 | [ |
FA3Bi2I9 | 45 keV | 0.9 | ~560 | 598.1 | 200 | 7.8×1010 | 2.08 | 2.4×10-5 | [ |
(DMEDA)BiI5 | 50 kVp | 0.6 | 494 | 72.5 | - | - | 1.82 | - | [ |
(H2MDAP)BiI5 | 70 keV | 2 | 5 | 1.0 | - | 2.1×1010 | 1.83 | - | [ |
CsPbI3 | 50 kVp | - | 4.17 | 2370 | 3020 | 7.4×109 | 2.67 | 3.63×10-3 | [ |
(NH4)3Bi2I9 (∥001) | 22 keV | - | 2.2 | 8200 | 210 | - | 2.05 | 1.1×10-2 | [ |
(NH4)3Bi2I9 (⊥001) | 22 keV | - | 6.5 | 803 | 55 | - | 2.05 | 4.0×10-3 | [ |
Rb3Bi2I9 | 30 keV | 1 | 300 | 159.7 | 8.32 | 2.3×109 | 1.89 | 2.51×10-3 | [ |
(F-PEA)2PbI4 | 120 keV | 1.5 | ~130 | 3402 | 23 | 1.36×1012 | 2.30 | 5.1×10-4 | [ |
(PMA)2PbI4 | 40 kVp | 0.9 | ~56 | 283 | 2130 | - | 2.01 | 8.05×10-3 | [ |
BA2PbI4 | 30 kVp | 2 | 10 | 148 | 241 | 2.6×1011 | 2.24 | 4.5×10-4 | [ |
BA2CsPbBr7 | 40 kVp | 3.91 | 2.53 | 13260 | 72.5 | 2.2×109 | 2.74 | - | [ |
BA2EA2Pb3Br10 | 70 keV | 2 | 5 | 6.8×103 | 5500 | 4.5×1010 | 2.55 | 1.0×10-2 | [ |
(CH3OC3H9N)2CsPb2Br7 | 80 kVp | 2 | 0 | 410 | - | - | 2.51 | 3.2×10-3 | [ |
BDAPbI4 | 40 kVp | - | 310 | 242 | 430 | - | 2.37 | 4.43×10-4 | [ |
(BDA)CsPb2Br7 | 50 kVp | 0.7 | ~43 | 725.5 | 3810 | 4.35×1010 | 2.76 | 2.33×10-5 | [ |
(3AMPY)(FA)Pb2I7 | 50 kVp | 1 | 200 | 5.23×104 | 151 | - | 1.54 | 2.0×10-3 | [ |
Polycrystalline | |||||||||
MA3Bi2i9 | 35.5 keV | 1 | 210 | 563 | 9.3 | 2.28×1011 | 2.08 | 4.6×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.1 | 150 | ~35 | 140 | ~5×1011 | 2.09 | 3.89×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.05 | 600 | ~100 | 98.4 | 3.38×1011 | 2.03 | 1.6×10-6 | [ |
MA3Bi2i9 | 40 kVp | 0.1 | 2000 | 2065 | 2.71 | 3.5×108 | 1.86 | - | [ |
Cs4PbBr6 | - | 0.3 | 666.7 | 7068 | 1.75 | 1.376×1011 | 3.88 | 1.01×10-3 | [ |
Cs2TeI6 | 40 kVp | 0.025 | 25 | 19.2 | - | 4.2×1010 | 1.57 | 5.2×10-5 | [ |
BA2MA9Pb10I31 | ~60 keV | 0.9 | 110 | 5362.3 | 8.1 | ~1×1010 | ~1.60 | 3.99×10-5 | [ |
BA2MA9Pb10I31 | 45 keV | 1 | 210 | 7109 | 9.3 | ~1.1×1010 | ~1.61 | ~5×10-5 | [ |
(BA2PbBr4)0.5FAPbI3 | - | 0.006 | ~167 | 1.36×104 | 4.2 | - | - | - | [ |
PEA2MA8Pb9I28 | 50 kVp | - | 600 | 10 860 | 69 | 5.4×1010 | 1.504 | 2.6×10−5 | [ |
Table 1 Comparison of low-dimensional perovskite X-ray detectors
Compound | Eph/keV, Vp/kVp | Thickness/ mm | Electric field/ (V·mm-1) | Sensitivity/ (µC·Gyair−1·cm−2) | LoD/ (nGyair·s−1) | Resistivity/ (Ω·cm) | Bandgap/ eV | µτ/ (cm2·V−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Single crystal | |||||||||
Cs4PbI6 | 30 keV | - | - | 451.49 | 90 | - | 3.46 | 9.7×10-4 | [ |
Cs3Bi2I9 | 40 kVp | 1.2 | 50 | 1652.3 | 130 | 2.79×1010 | 1.96 | 7.97×10-4 | [ |
Cs3Bi2I9 | 45 keV | 1 | 120 | 964 | 44.6 | 1.12×109 | ~1.89 | 1.87×10-3 | [ |
MA3Bi2i9 | 100 kVp | 2.5 | 48 | 10620 | 0.62 | 5.27×1011 | 1.98 | 2.8×10-3 | [ |
MA3Bi2i9 | 40 kVp | 1 | 60 | 1947 | 83 | 3.74×1010 | 1.99 | 2.87×10-3 | [ |
FA3Bi2I9 | 45 keV | 0.9 | ~560 | 598.1 | 200 | 7.8×1010 | 2.08 | 2.4×10-5 | [ |
(DMEDA)BiI5 | 50 kVp | 0.6 | 494 | 72.5 | - | - | 1.82 | - | [ |
(H2MDAP)BiI5 | 70 keV | 2 | 5 | 1.0 | - | 2.1×1010 | 1.83 | - | [ |
CsPbI3 | 50 kVp | - | 4.17 | 2370 | 3020 | 7.4×109 | 2.67 | 3.63×10-3 | [ |
(NH4)3Bi2I9 (∥001) | 22 keV | - | 2.2 | 8200 | 210 | - | 2.05 | 1.1×10-2 | [ |
(NH4)3Bi2I9 (⊥001) | 22 keV | - | 6.5 | 803 | 55 | - | 2.05 | 4.0×10-3 | [ |
Rb3Bi2I9 | 30 keV | 1 | 300 | 159.7 | 8.32 | 2.3×109 | 1.89 | 2.51×10-3 | [ |
(F-PEA)2PbI4 | 120 keV | 1.5 | ~130 | 3402 | 23 | 1.36×1012 | 2.30 | 5.1×10-4 | [ |
(PMA)2PbI4 | 40 kVp | 0.9 | ~56 | 283 | 2130 | - | 2.01 | 8.05×10-3 | [ |
BA2PbI4 | 30 kVp | 2 | 10 | 148 | 241 | 2.6×1011 | 2.24 | 4.5×10-4 | [ |
BA2CsPbBr7 | 40 kVp | 3.91 | 2.53 | 13260 | 72.5 | 2.2×109 | 2.74 | - | [ |
BA2EA2Pb3Br10 | 70 keV | 2 | 5 | 6.8×103 | 5500 | 4.5×1010 | 2.55 | 1.0×10-2 | [ |
(CH3OC3H9N)2CsPb2Br7 | 80 kVp | 2 | 0 | 410 | - | - | 2.51 | 3.2×10-3 | [ |
BDAPbI4 | 40 kVp | - | 310 | 242 | 430 | - | 2.37 | 4.43×10-4 | [ |
(BDA)CsPb2Br7 | 50 kVp | 0.7 | ~43 | 725.5 | 3810 | 4.35×1010 | 2.76 | 2.33×10-5 | [ |
(3AMPY)(FA)Pb2I7 | 50 kVp | 1 | 200 | 5.23×104 | 151 | - | 1.54 | 2.0×10-3 | [ |
Polycrystalline | |||||||||
MA3Bi2i9 | 35.5 keV | 1 | 210 | 563 | 9.3 | 2.28×1011 | 2.08 | 4.6×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.1 | 150 | ~35 | 140 | ~5×1011 | 2.09 | 3.89×10-5 | [ |
MA3Bi2i9 | 30.6 keV | ~0.05 | 600 | ~100 | 98.4 | 3.38×1011 | 2.03 | 1.6×10-6 | [ |
MA3Bi2i9 | 40 kVp | 0.1 | 2000 | 2065 | 2.71 | 3.5×108 | 1.86 | - | [ |
Cs4PbBr6 | - | 0.3 | 666.7 | 7068 | 1.75 | 1.376×1011 | 3.88 | 1.01×10-3 | [ |
Cs2TeI6 | 40 kVp | 0.025 | 25 | 19.2 | - | 4.2×1010 | 1.57 | 5.2×10-5 | [ |
BA2MA9Pb10I31 | ~60 keV | 0.9 | 110 | 5362.3 | 8.1 | ~1×1010 | ~1.60 | 3.99×10-5 | [ |
BA2MA9Pb10I31 | 45 keV | 1 | 210 | 7109 | 9.3 | ~1.1×1010 | ~1.61 | ~5×10-5 | [ |
(BA2PbBr4)0.5FAPbI3 | - | 0.006 | ~167 | 1.36×104 | 4.2 | - | - | - | [ |
PEA2MA8Pb9I28 | 50 kVp | - | 600 | 10 860 | 69 | 5.4×1010 | 1.504 | 2.6×10−5 | [ |
[1] |
ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett., 2021, 6(2): 739.
DOI URL |
[2] |
MENG G, YE Y, FAN L, et al. Recent progress of halide perovskite radiation detector materials. J. Inorg. Mater., 2020, 35(11): 1203.
DOI |
[3] |
LIN E C. Radiation risk from medical imaging. Mayo Clin. Proc., 2010, 85(12): 1142.
DOI PMID |
[4] |
HEISS W, BRABEC C. Perovskites target X-ray detection. Nat. Photonics, 2016, 10(5): 288.
DOI |
[5] |
KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D: Appl. Phys., 2000, 33(21): 2853.
DOI URL |
[6] |
SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B, 2004, 241(3): 783.
DOI URL |
[7] |
GUERRA M, MANSO M, LONGELIN S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J. Instrum., 2012, 7(10): C10004.
DOI URL |
[8] |
LUKE P N, AMMAN M, TINDALL C, et al. Recent developments in semiconductor gamma-ray detectors. J. Radioanal. Nucl. Chem., 2005, 264(1): 145.
DOI URL |
[9] |
SCHIEBER M, HERMON H, ZUCK A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth, 2001, 225(2): 118.
DOI URL |
[10] |
JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today, 2022, 55: 110.
DOI URL |
[11] |
HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun., 2017, 8(1): 16045.
DOI PMID |
[12] |
WANG Q, ZHENG X, DENG Y, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2): 371.
DOI URL |
[13] |
GLUSHKOVA A, ANDRIČEVIĆ P, SMAJDA R, et al. Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano, 2021, 15(3): 4077.
DOI PMID |
[14] |
XIA M, SONG Z, WU H, et al. Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater., 2022, 32(16): 2110729.
DOI URL |
[15] |
ZHU M, DU X, NIU G, et al. Template directed perovskite X-ray detectors towards low ionic migration and low interpixel cross talking. Fundamental Research, 2022, 2(1): 108.
DOI URL |
[16] | MESCHER H, SCHACKMAR F, EGGERS H, et al. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Appl. Matter. Interfaces, 2020, 12(13): 15774. |
[17] |
ZHOU C, LIN H, HE Q, et al. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R Rep., 2019, 137: 38.
DOI URL |
[18] |
WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics, 2017, 11(5): 315.
DOI URL |
[19] |
QIAN W, XU X, WANG J, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 2021, 4: 942.
DOI URL |
[20] | HU M, JIA S, LIU Y, et al. Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Matter. Interfaces, 2020, 12(14): 16592. |
[21] |
YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics, 2015, 9(7): 444.
DOI |
[22] |
XIN D, ZHANG M, FAN Z, et al. A-site cation engineering of Ruddlesden-Popper perovskites for stable, sensitive, and portable direct conversion X-ray imaging detectors. J. Phys. Chem. Lett., 2022, 13: 11928.
DOI PMID |
[23] |
LIU Y, ZHANG Y, ZHU X, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater., 2021, 33(8): 2006010.
DOI URL |
[24] |
LIN Y, BAI Y, FANG Y, et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett., 2017, 2(7): 1571.
DOI URL |
[25] |
ZHENG X, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem., 2020, 49: 299.
DOI |
[26] |
ZHANG M, XIN D, DONG S, et al. Methylamine-assisted preparation of Ruddlesden-Popper perovskites for stable detection and imaging of X-rays. Adv. Opt. Mater., 2022, 10(23): 2201548.
DOI URL |
[27] |
XU X, QIAN W, WANG J, et al. Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Adv. Sci., 2021, 8(21): 2102730.
DOI URL |
[28] |
ZHANG Y, LIU Y, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun., 2020, 11: 2304.
DOI |
[29] |
ZHUANG R, WANG X, MA W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics, 2019, 13: 602.
DOI |
[30] |
AZMI R, UGUR E, SEITKHAN A, et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376(6588): 73.
DOI URL |
[31] |
JANG Y W, LEE S, YEOM K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy, 2021, 6(1): 63.
DOI |
[32] |
YAO Q, XUE Q, LI Z, et al. Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater., 2020, 32(26): 2000571.
DOI URL |
[33] |
WU Y, FENG J, YANG Z, et al. Halide perovskite: a promising candidate for next-generation X-ray detectors. Adv. Sci., 2022, 10(1): 2205536.
DOI URL |
[34] |
CHEN M, WANG C, HU W. Organic photoelectric materials for X-ray and gamma ray detection: mechanism, material preparation and application. J. Mater. Chem. C, 2021, 9(14): 4709.
DOI URL |
[35] |
XU X, QIAN W, XIAO S, et al. Halide perovskites: a dark horse for direct X-ray imaging. EcoMat, 2020, 2(4): e12064.
DOI URL |
[36] |
ROWLANDS J A. Material change for X-ray detectors. Nature, 2017, 550(7674): 47.
DOI URL |
[37] |
YANG B, PAN W, WU H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun., 2019, 10: 1989.
DOI |
[38] | XIAO Y, XUE C, WANG X, et al. Bulk heterostructure BA2PbI4/MAPbI3 perovskites for suppressed ion migration to achieve sensitive X-ray detection performance. ACS Appl. Matter. Interf., 2022, 14(49): 54867. |
[39] |
WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics, 2016, 10(5): 333.
DOI |
[40] |
YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics, 2016, 10(9): 585.
DOI |
[41] |
LI L, CHEN H, FANG Z, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater., 2020, 32(24): 1907257.
DOI URL |
[42] |
JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing. Adv. Mater., 2016, 28(24): 4766.
DOI URL |
[43] |
FANG Y, HUANG J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater., 2015, 27(17): 2804.
DOI |
[44] |
PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics, 2017, 11(11): 726.
DOI URL |
[45] |
VASILEIADOU E S, WANG B, SPANOPOULOS I, et al. Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites. J. Am. Chem. Soc., 2021, 143(6): 2523.
DOI PMID |
[46] |
DI J, CHANG J, LIU S. Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat, 2020, 2(3): e12036.
DOI URL |
[47] |
CAO F, ZHANG P, LI L. Multidimensional perovskite solar cells. Fundam. Res., 2022, 2(2): 237.
DOI URL |
[48] | SONG Y, LI L, BI W, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors. Research, 2020, 2020: 5958243. |
[49] |
HE Y, HADAR I, KANATZIDIS M G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics, 2022, 16: 14.
DOI |
[50] |
XU Y, WANG M, LEI Y, et al. Crystallization Kinetics in 2D perovskite solar cells. Adv. Energy Mater., 2020, 10(43): 2002558.
DOI URL |
[51] |
LIU Y, YANG Z, LIU S. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci., 2018, 5: 1700471.
DOI URL |
[52] |
LI W, XIN D, TIE S, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection. J. Phys. Chem. Lett., 2021, 12(7): 1778.
DOI URL |
[53] |
WEI S, TIE S, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal. Adv. Opt. Mater., 2021, 9(22): 2101351.
DOI URL |
[54] |
LIU Y, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter, 2020, 3(1): 180.
DOI URL |
[55] |
XU Q, LI C, NIE J, et al. Highly sensitive and stable X-ray detector based on a 0D structural Cs4PbI6 single crystal. J. Phys. Chem. Lett., 2021, 12(1): 287.
DOI URL |
[56] |
MOHAN R. Green bismuth. Nat. Chem., 2010, 2(4): 336.
DOI PMID |
[57] |
TAO K, LI Y, JI C, et al. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem. Mater., 2019, 31(15): 5927.
DOI |
[58] |
YAO L, NIU G, YIN L, et al. Bismuth halide perovskite derivatives for direct X-ray detection. J. Mater. Chem. C, 2020, 8(4): 1239.
DOI URL |
[59] |
ZHANG B-B, XIAO B, DONG S, et al. The preparation and characterization of quasi-one-dimensional lead based perovskite CsPbI3 crystals from HI aqueous solutions. J. Cryst. Growth, 2018, 498: 1.
DOI URL |
[60] |
ZHANG B B, LIU X, XIAO B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J. Phys. Chem. Lett., 2020, 11(2): 432.
DOI URL |
[61] |
XIA M, YUAN J H, NIU G, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater., 2020, 30(24): 1910648.
DOI URL |
[62] |
LIANG C, GU H, XIA Y, et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy, 2021, 6(1): 38.
DOI |
[63] |
LI X, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev., 2021, 121(4): 2230.
DOI PMID |
[64] |
YUKTA, GHOSH J, AFROZ M A, et al. Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS Photonics, 2022, 9(11): 3529.
DOI URL |
[65] |
SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites. Chem. Rev., 2019, 119(5): 3104.
DOI PMID |
[66] |
LI H, SONG J, PAN W, et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater., 2020, 32(40): 2003790.
DOI URL |
[67] |
QIAN C X, WANG M Z, LU S S, et al. Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved X-ray detector. Appl. Phys. Lett., 2022, 120(1): 011901.
DOI URL |
[68] |
XIAO B, SUN Q, WANG F, et al. Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. J. Mater. Chem. A, 2021, 9(22): 13209.
DOI URL |
[69] |
JI C, WANG S, WANG Y, et al. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater., 2020, 30(5): 1905529.
DOI URL |
[70] |
JI C, LI Y, LIU X, et al. Monolayer-to-multilayer dimensionality reconstruction in a hybrid perovskite for exploring the bulk photovoltaic effect enables passive X-ray detection. Angew. Chem. Int. Ed., 2021, 60(38): 20970.
DOI URL |
[71] |
LIU X, WANG S, LONG P, et al. Polarization-driven self-powered photodetection in a pingle-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed., 2019, 58(41): 14504.
DOI URL |
[72] |
SHEN Y, LIU Y, YE H, et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed., 2020, 59(35): 14896.
DOI URL |
[73] |
XIAO B, SUN Q, WANG S, et al. Two-dimensional Dion-Jacobson perovskite (NH3C4H8NH3)CsPb2Br7 with high X-ray sensitivity and peak discrimination of α-particles. J. Phys. Chem. Lett., 2022, 13(5): 1187.
DOI URL |
[74] |
LI X, KE W, TRAORÉ B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc., 2019, 141(32): 12880.
DOI PMID |
[75] | FU D, HOU Z, HE Y, et al. Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals. ACS Appl. Matter. Interf., 2022, 14(9): 11690. |
[76] |
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87.
DOI URL |
[77] |
TIE S, ZHAO W, XIN D, et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater., 2020, 32(31): 2001981.
DOI URL |
[78] |
XIN D, DONG S, ZHANG M, et al. Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors. J. Phys. Chem. Lett., 2022, 13(1): 371.
DOI URL |
[79] |
DONG S, XIN D, ZHANG M, et al. Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors. J. Mater. Chem. C, 2022, 10: 6236.
DOI URL |
[80] |
LIU X M, LI H J, CUI Q Y, et al. Molecular doping of flexible lead-free perovskite-polymer thick membranes for high-performance X-ray detection. Angew. Chem. Int. Ed., 2022, 61(41): e202209320.
DOI URL |
[81] |
CHEN H, AN B, PENG G, et al. High-quality 0D Cs4PbBr6-based dense wafer for high-sensitivity X-ray detection and high-resolution imaging in harsh environment. Adv. Opt. Mater., 2022, 11(1): 2202157.
DOI URL |
[82] |
XU Y, JIAO B, SONG T-B, et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics, 2019, 6(1): 196.
DOI URL |
[83] |
PENG J, XU Y, YAO F, et al. Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging. Matter, 2022, 5(7): 2251.
DOI URL |
[84] |
HE X, XIA M, WU H, et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv. Funct. Mater., 2022, 32(7): 2109458.
DOI URL |
[85] |
JI R, ZHANG Z, HOFSTETTER Y J, et al. Perovskite phase heterojunction solar cells. Nat. Energy, 2022, 7: 1170.
DOI |
[86] |
JIN P, TANG Y, LI D, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat. Commun., 2023, 14: 626.
DOI PMID |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||